Signed zero is zero with an associated sign. In ordinary arithmetic, the number 0 does not have a sign, so that −0, +0 and 0 are identical. However, in computing, some number representations allow for the existence of two zeros, often denoted by −0 and +0, regarded as equal by the numerical comparison operations but with possible different behaviors in particular operations. This occurs in the sign and magnitude and ones' complementsigned number representations for integers, and in most floating-point number representations. The number 0 is usually encoded as +0, but can be represented by either +0 or −0. The IEEE 754 standard for floating-point arithmetic requires both +0 and −0. Real arithmetic with signed zeros can be considered a variant of the extended real number line such that 1/−0 = −∞ and 1/+0 = +∞; division is only undefined for ±0/±0 and ±∞/±∞. Negatively signed zero echoes the mathematical analysis concept of approaching 0 from below as a one-sided limit, which may be denoted by x → 0−, x → 0−, or x → ↑0. The notation "−0" may be used informally to denote a small negative number that has been rounded to zero. The concept of negative zero also has some theoretical applications in statistical mechanics and other disciplines. It is claimed that the inclusion of signed zero in IEEE 754 makes it much easier to achieve numerical accuracy in some critical problems, in particular when computing with complex elementary functions. On the other hand, the concept of signed zero runs contrary to the general assumption made in most mathematical fields that negative zero is the same thing as zero. Representations that allow negative zero can be a source of errors in programs, if software developers do not take into account that while the two zero representations behave as equal under numeric comparisons, they yield different results in some operations.
Representations
The widely used two's complement encoding does not allow a negative zero. In a 1+7-bit sign-and-magnitude representation for integers, negative zero is represented by the bit string. In an 8-bit one's complement representation, negative zero is represented by the bit string. In all three encodings, positive zero is represented by. However, these are uncommon formats, the most common formats including negative zero are the IEEE 754 floating-point formats, described below.
In IEEE 754 binary floating-point numbers, zero values are represented by the biased exponent and significand both being zero. Negative zero has the sign bit set to one. One may obtain negative zero as the result of certain computations, for instance as the result of arithmetic underflow on a negative number, or −1.0×0.0, or simply as −0.0. In IEEE 754 decimal floating-point encoding, a negative zero is represented by an exponent being any valid exponent in the range for the encoding, the true significand being zero, and the sign bit being one.
Properties and handling
The IEEE 754 floating-point standard specifies the behavior of positive zero and negative zero under various operations. The outcome may depend on the current IEEE rounding mode settings.
Notation
In systems that include both signed and unsigned zeros, the notation and is sometimes used for signed zeros.
Arithmetic
Addition and multiplication are commutative, but there are some special rules that have to be followed, which mean the usual mathematical rules for algebraic simplification may not apply. The sign below shows the signed result of the operations. The usual rule for signs is always followed when multiplying or dividing:
There are special rules for adding or subtracting signed zero:
Because of negative zero, the expressions and, for floating-point variables x and y, cannot be replaced by. However can be replaced by x with rounding to nearest. Some other special rules:
Division of a non-zero number by zero sets the divide by zeroflag, and an operation producing a NaN sets the invalid operation flag. An exception handler is called if enabled for the corresponding flag.
Comparisons
According to the IEEE 754 standard, negative zero and positive zero should compare as equal with the usual comparison operators, like the operators of C and Java. In those languages, special programming tricks may be needed to distinguish the two values:
Type punning the number to an integer type, so as to look at the sign bit in the bit pattern;
using the ISO Ccopysign function to copy the sign of the zero to some non-zero number;
using the ISO C signbit macro that returns whether the sign bit of a number is set;
taking the reciprocal of the zero to obtain either 1/ = +∞ or 1/ = −∞.
Note: Casting to integral type will not always work, especially on two's complement systems. However, some programming languages may provide alternative comparison operators that do distinguish the two zeros. This is the case, for example, of the equals method in Java's Double wrapper class.
Scientific uses
Informally, one may use the notation "−0" for a negative value that was rounded to zero. This notation may be useful when a negative sign is significant; for example, when tabulating Celsius temperatures, where a negative sign means below freezing. In statistical mechanics, one sometimes uses negative temperatures to describe systems with population inversion, which can be considered to have a temperature greater thanpositive infinity, because the coefficient of energy in the population distribution function is −1/Temperature. In this context, a temperature of −0 is a temperature larger than any other negative temperature, corresponding to the maximum conceivable extent of population inversion, the opposite extreme to +0.