Selenium tetrafluoride


Selenium tetrafluoride is an inorganic compound. It is a colourless liquid that reacts readily with water. It can be used as a fluorinating reagent in organic syntheses and has advantages over sulfur tetrafluoride in that milder conditions can be employed and it is a liquid rather than a gas.

Synthesis

The first reported synthesis of selenium tetrafluoride was by Paul Lebeau in 1907, who treated selenium with fluorine:
A synthesis involving more easily handled reagents entails the fluorination of selenium dioxide with sulfur tetrafluoride:
An intermediate in this reaction is seleninyl fluoride.
Other methods of preparation include fluorinating elemental selenium with chlorine trifluoride:

Structure and bonding

Selenium in SeF4 has an oxidation state of +4. Its shape in the gaseous phase is similar to that of SF4, having a see-saw shape. VSEPR theory predicts a pseudo-trigonal pyramidal disposition of the five electron pairs around the selenium atom. The axial Se-F bonds are 177 pm with an F-Se-F bond angle of 169.2°. The two other fluorine atoms are attached by shorter bonds, with an F-Se-F bond angle of 100.6°. In solution at low concentrations this monomeric structure predominates, but at higher concentrations evidence suggests weak association between SeF4 molecules leading to a distorted octahedral coordination around the selenium atom. In the solid the selenium center also has a distorted octahedral environment.

Reactions

In HF, SeF4 behaves as a weak base, weaker than sulfur tetrafluoride, SF4 :
Ionic adducts containing the SeF3+ cation are formed with SbF5, AsF5, NbF5, TaF5, and BF3.
With caesium fluoride, CsF, the SeF5 anion is formed, which has a square pyramidal structure similar to the isoelectronic chlorine pentafluoride, ClF5 and bromine pentafluoride, BrF5.
With 1,1,3,3,5,5-hexamethylpiperidinium fluoride or 1,2-dimethylpropyltrimethylammonium fluoride, the SeF62− anion is formed. This has a distorted octahedral shape which contrasts to the regular octahedral shape of the analogous SeCl62−.