Science and technology studies


Science and technology studies, or science, technology and society studies is the study of how society, politics, and culture affect scientific research and technological innovation, and how these, in turn, affect society, politics and culture.

History

Like most interdisciplinary programs, STS emerged from the confluence of a variety of disciplines and disciplinary subfields, all of which had developed an interest—typically, during the 1960s or 1970s—in viewing science and technology as socially embedded enterprises. The key disciplinary components of STS took shape independently, beginning in the 1960s, and developed in isolation from each other well into the 1980s, although Ludwik Fleck's monograph Genesis and Development of a Scientific Fact anticipated many of STS's key themes. In the 1970s Elting E. Morison founded the STS program at Massachusetts Institute of Technology, which served as a model. By 2011, 111 STS research centres and academic programs were counted worldwide.

Key themes

During the 1970s and 1980s, leading universities in the US, UK, and Europe began drawing these various components together in new, interdisciplinary programs. For example, in the 1970s, Cornell University developed a new program that united science studies and policy-oriented scholars with historians and philosophers of science and technology. Each of these programs developed unique identities due to variation in the components that were drawn together, as well as their location within the various universities. For example, the University of Virginia's STS program united scholars drawn from a variety of fields ; however, the program's teaching responsibilities—it is located within an engineering school and teaches ethics to undergraduate engineering students—means that all of its faculty share a strong interest in engineering ethics.

The "turn to technology" (and beyond)

A decisive moment in the development of STS was the mid-1980s addition of technology studies to the range of interests reflected in science. During that decade, two works appeared en seriatim that signaled what Steve Woolgar was to call the "turn to technology". In a seminal 1984 article, Trevor Pinch and Wiebe Bijker attached the sociology of scientific knowledge to technology by showing how the sociology of technology could proceed along the theoretical and methodological lines established by the sociology of scientific knowledge. This was the intellectual foundation of the field they called the social construction of technology. Donald MacKenzie and Judy Wajcman primed the pump by publishing a collection of articles attesting to the influence of society on technological design.
The "turn to technology" helped to cement an already growing awareness of underlying unity among the various emerging STS programs. More recently, there has been an associated turn to ecology, nature, and materiality in general, whereby the socio-technical and natural/material co-produce each other. This is especially evident in work in STS analyses of biomedicine and ecological interventions.

Important concepts

STS social construction

Social constructions are human-created ideas, objects, or events created by a series of choices and interactions. These interactions have consequences that change the perception that different groups of people have on these constructs. Some examples of social construction include class, race, money, and citizenship.
The following also alludes to the notion that not everything is set, a circumstance or result could potentially be one way or the other. According to the article "What is Social Construction?" by Laura Flores, "Social construction work is critical of the status quo. Social constructionists about X tend to hold that:
  1. X need not have existed, or need not be at all as it is. X, or X as it is at present, is not determined by the nature of things; it is not inevitable
Very often they go further, and urge that:
  1. X is quite as bad as it is.
  2. We would be much better off if X were done away with, or at least radically transformed."
In the past, there have been viewpoints that were widely regarded as fact until being called to question due to the introduction of new knowledge. Such viewpoints include the past concept of a correlation between intelligence and the nature of a human's ethnicity or race.
An example of the evolution and interaction of various social constructions within science and technology can be found in the development of both the high-wheel bicycle, or velocipede, and then of the bicycle. The velocipede was widely used in the latter half of the 19th century. In the latter half of the 19th century, a social need was first recognized for a more efficient and rapid means of transportation. Consequently, the velocipede was first developed, which was able to reach higher translational velocities than the smaller non-geared bicycles of the day, by replacing the front wheel with a larger radius wheel. One notable trade-off was a certain decreased stability leading to a greater risk of falling. This trade-off resulted in many riders getting into accidents by losing balance while riding the bicycle or being thrown over the handle bars.
The first "social construction" or progress of the velocipede caused the need for a newer "social construction" to be recognized and developed into a safer bicycle design. Consequently, the velocipede was then developed into what is now commonly known as the "bicycle" to fit within society's newer "social construction," the newer standards of higher vehicle safety. Thus the popularity of the modern geared bicycle design came as a response to the first social construction, the original need for greater speed, which had caused the high-wheel bicycle to be designed in the first place. The popularity of the modern geared bicycle design ultimately ended the widespread use of the velocipede itself, as eventually it was found to best accomplish the social-needs/ social-constructions of both greater speed and of greater safety.

Technoscience

Technoscience is a subset of Science, Technology, and Society studies that focuses on the inseparable connection between science and technology. It states that fields are linked and grow together, and scientific knowledge requires an infrastructure of technology in order to remain stationary or move forward. Both technological development and scientific discovery drive one another towards more advancement. Technoscience excels at shaping human thought and behavior by opening up new possibilities that gradually or quickly come to be perceived as necessities.

Technosocial

"Technological action is a social process." Social factors and technology are intertwined so that they are dependent upon each other. This includes the aspect that social, political, and economic factors are inherent in technology and that social structure influences what technologies are pursued. In other words, "technoscientific phenomena combined inextricably with social/political/ economic/psychological phenomena, so 'technology' includes a spectrum of artifacts, techniques, organizations, and systems." Winner expands on this idea by saying "in the late twentieth century technology and society, technology and culture, technology and politics are by no means separate."

Examples

is a reform of representative or direct democracies which mandates discussion and debate of popular topics which affect society. Deliberative democracy is a tool for making decisions. Deliberative democracy can be traced back all the way to Aristotle's writings. More recently, the term was coined by Joseph Bessette in his 1980 work Deliberative Democracy: The Majority Principle in Republican Government, where he uses the idea in opposition to the elitist interpretations of the United States Constitution with emphasis on public discussion.
Deliberative democracy can lead to more legitimate, credible, and trustworthy outcomes. Deliberative democracy allows for "a wider range of public knowledge", and it has been argued that this can lead to "more socially intelligent and robust" science. One major shortcoming of deliberative democracy is that many models insufficiently ensure critical interaction.
According to Ryfe, there are five mechanisms that stand out as critical to the successful design of deliberative democracy:
Recently, there has been a movement towards greater transparency in the fields of policy and technology. Jasanoff comes to the conclusion that there is no longer a question of if there needs to be increased public participation in making decisions about science and technology, but now there needs to be ways to make a more meaningful conversation between the public and those developing the technology.

Deliberative democracy in practice

and James S. Fishkin offered an example of a reform in their paper "Deliberation Day." The deliberation is to enhance public understanding of popular, complex and controversial issues through devices such as Fishkin's deliberative polling, though implementation of these reforms is unlikely in a large government such as that of the United States. However, things similar to this have been implemented in small, local governments like New England towns and villages. New England town hall meetings are a good example of deliberative democracy in a realistic setting.
An ideal deliberative democracy balances the voice and influence of all participants. While the main aim is to reach consensus, deliberative democracy should encourage the voices of those with opposing viewpoints, concerns due to uncertainties, and questions about assumptions made by other participants. It should take its time and ensure that those participating understand the topics on which they debate. Independent managers of debates should also have substantial grasp of the concepts discussed, but must " independent and impartial as to the outcomes of the process."

Tragedy of the commons

In 1968, Garrett Hardin popularised the phrase "tragedy of the commons." It is an economic theory where rational people act against the best interest of the group by consuming a common resource. Since then, the tragedy of the commons has been used to symbolize the degradation of the environment whenever many individuals use a common resource. Although Garrett Hardin was not an STS scholar, the concept of the tragedy of the commons still applies to science, technology and society.
In a contemporary setting, the Internet acts as an example of the tragedy of the commons through the exploitation of digital resources and private information. Data and internet passwords can be stolen much more easily than physical documents. Virtual spying is almost free compared to the costs of physical spying. Additionally, net neutrality can be seen as an example of tragedy of the commons in an STS context. The movement for net neutrality argues that the Internet should not be a resource that is dominated by one particular group, specifically those with more money to spend on Internet access.
A counterexample to the tragedy of the commons is offered by Andrew Kahrl. Privatization can be a way to deal with the tragedy of the commons. However, Kahrl suggests that the privatization of beaches on Long Island, in an attempt to combat the overuse of Long Island beaches, made the residents of Long Island more susceptible to flood damage from Hurricane Sandy. The privatization of these beaches took away from the protection offered by the natural landscape. Tidal lands that offer natural protection were drained and developed. This attempt to combat the tragedy of the commons by privatization was counter-productive. Privatization actually destroyed the public good of natural protection from the landscape.

Alternative modernity

Alternative modernity is a conceptual tool conventionally used to represent the state of present western society. Modernity represents the political and social structures of the society, the sum of interpersonal discourse, and ultimately a snapshot of society's direction at a point in time. Unfortunately conventional modernity is incapable of modeling alternative directions for further growth within our society. Also, this concept is ineffective at analyzing similar but unique modern societies such as those found in the diverse cultures of the developing world. Problems can be summarized into two elements: inward failure to analyze growth potentials of a given society, and outward failure to model different cultures and social structures and predict their growth potentials.
Previously, modernity carried a connotation of the current state of being modern, and its evolution through European colonialism. The process of becoming "modern" is believed to occur in a linear, pre-determined way, and is seen by Philip Brey as a way to interpret and evaluate social and cultural formations. This thought ties in with modernization theory, the thought that societies progress from "pre-modern" to "modern" societies.
Within the field of science and technology, there are two main lenses with which to view modernity. The first is as a way for society to quantify what it wants to move towards. In effect, we can discuss the notion of "alternative modernity" and which of these we would like to move towards. Alternatively, modernity can be used to analyze the differences in interactions between cultures and individuals. From this perspective, alternative modernities exist simultaneously, based on differing cultural and societal expectations of how a society should function. Because of different types of interactions across different cultures, each culture will have a different modernity.

Pace of innovation

Pace of Innovation is the speed at which technological innovation or advancement is occurring, with the most apparent instances being too slow or too rapid. Both these rates of innovation are extreme and therefore have effects on the people that get to use this technology.

No innovation without representation

"No innovation without representation" is a democratic ideal of ensuring that everyone involved gets a chance to be represented fairly in technological developments.
The privileged positions of business and science refer to the unique authority that persons in these areas hold in economic, political, and technosocial affairs. Businesses have strong decision-making abilities in the function of society, essentially choosing what technological innovations to develop. Scientists and technologists have valuable knowledge, the ability to pursue the technological innovations they want. They proceed largely without public scrutiny and as if they had the consent of those potentially affected by their discoveries and creations.

Legacy thinking

Legacy thinking is defined as an inherited method of thinking imposed from an external source without objection by the individual, because it is already widely accepted by society.
Legacy thinking can impair the ability to drive technology for the betterment of society by blinding people to innovations that do not fit into their accepted model of how society works. By accepting ideas without questioning them, people often see all solutions that contradict these accepted ideas as impossible or impractical. Legacy thinking tends to advantage the wealthy, who have the means to project their ideas on the public. It may be used by the wealthy as a vehicle to drive technology in their favor rather than for the greater good.
Examining the role of citizen participation and representation in politics provides an excellent example of legacy thinking in society. The belief that one can spend money freely to gain influence has been popularized, leading to public acceptance of corporate lobbying. As a result, a self-established role in politics has been cemented where the public does not exercise the power ensured to them by the Constitution to the fullest extent. This can become a barrier to political progress as corporations who have the capital to spend have the potential to wield great influence over policy. Legacy thinking, however, keeps the population from acting to change this, despite polls from Harris Interactive that report over 80% of Americans to feel that big business holds too much power in government. Therefore, Americans are beginning to try to steer away from this line of thought, rejecting legacy thinking, and demanding less corporate, and more public, participation in political decision making.
Additionally, an examination of net neutrality functions as a separate example of legacy thinking. Starting with dial-up, the internet has always been viewed as a private luxury good. Internet today is a vital part of modern-day society members. They use it in and out of life every day. Corporations are able to mislabel and greatly overcharge for their internet resources. Since the American public is so dependent upon internet there is little for them to do. Legacy thinking has kept this pattern on track despite growing movements arguing that the internet should be considered a utility. Legacy thinking prevents progress because it was widely accepted by others before us through advertising that the internet is a luxury and not a utility. Due to pressure from grassroots movements the Federal Communications Commission has redefined the requirements for broadband and internet in general as a utility. Now AT&T and other major internet providers are lobbying against this action and are in-large able to delay the onset of this movement due to legacy thinking's grip on American culture and politics.
For example, those who cannot overcome the barrier of legacy thinking may not consider the privatization of clean drinking water as an issue. This is partial because access to water has become such a given fact of the matter to them. For a person living in such circumstances, it may be widely accepted to not concern themselves with drinking water because they have not needed to be concerned with it in the past. Additionally, a person living within an area that does not need to worry about their water supply or the sanitation of their water supply is less likely to be concerned with the privatization of water.
This notion can be examined through the thought experiment of "veil of ignorance". Legacy thinking causes people to be particularly ignorant about the implications behind the "you get what you pay for" mentality applied to a life necessity. By utilizing the "veil of ignorance", one can overcome the barrier of legacy thinking as it requires a person to imagine that they are unaware of their own circumstances, allowing them to free themselves from externally imposed thoughts or widely accepted ideas.

Related concepts

STS is taught in several countries. According to the STS wiki, STS programs can be found in twenty countries, including 45 programs in the United States, three programs in India, and eleven programs in the UK. STS programs can be found in Canada, Germany, Israel, Malaysia, and Taiwan. Some examples of institutions offering STS programs are Stanford University, Harvard University, the University of Oxford, Mines ParisTech, Bar-Ilan University, and York University.

Professional associations

The field has several professional associations.
Founded in 1975, the Society for Social Studies of Science, initially provided scholarly communication facilities, including a journal and annual meetings that were mainly attended by science studies scholars. The society has since grown into the most important professional association of science and technology studies scholars worldwide. The Society for Social Studies of Science members also include government and industry officials concerned with research and development as well as science and technology policy; scientists and engineers who wish to better understand the social embeddedness of their professional practice; and citizens concerned about the impact of science and technology in their lives.
In Europe, the European Association for the Study of Science and Technology was founded in 1981 to "improve scholarly communication and exchange in the field", "increase the visibility of the subject to policy-makers and to the general public", and "stimulate and support teaching on the subject at all levels". Similarly, the European Inter-University Association on Society, Science and Technology researches and studies science and technology in society, in both historical and contemporary perspectives.
In European nation states and language communities, a range of STS associations exist, including in the UK, Spain, Germany, Austria, Turkey. For instance, in 2015, the UK-based Association for Studies in Innovation, Science and Technology was established, principally to foster stronger integration between the innovation studies and STS fields. In 2019 it had a membership of 350. It holds annual conferences and has built strong links to policy practitioners in Westminster.
In Asia several STS associations exist.
In Japan, the Japanese Society for Science and Technology Studies was founded in 2001. The Asia Pacific Science Technology & Society Network primarily has members from Australasia, Southeast and East Asia and Oceania.
In Latin America ESOCITE is the biggest association of Science and Technology studies. The study of STS here was shaped by authors like and Jorge Sabato and in Argentina, José Leite Lopes in Brazil, Miguel Wionczek in Mexico, Francisco Sagasti in Peru, Máximo Halty Carrere in Uruguay and Marcel Roche in Venezuela.
Founded in 1958, the Society for the History of Technology initially attracted members from the history profession who had interests in the contextual history of technology. After the "turn to technology" in the mid-1980s, the society's well-regarded journal and its annual meetings began to attract considerable interest from non-historians with technology studies interests.
Less identified with STS, but also of importance to many STS scholars, are the History of Science Society, the Philosophy of Science Association, and the American Association for the History of Medicine.
Additionally, within the US there are significant STS-oriented special interest groups within major disciplinary associations, including the American Anthropological Association, the American Political Science Association, the National Women's Studies Association, and the American Sociological Association.

Journals

Notable peer-reviewed journals in STS include:
Student journals in STS include:

Notable scholars