Grigorchuk is most well known for having constructed the first example of a finitely generated group of intermediate growth which now bears his name and is called the Grigorchuk group. This group has growth that is faster than polynomial but slower than exponential. Grigorchuk constructed this group in a 1980 paper and proved that it has intermediate growth in a 1984 article. This result answered a long-standing open problem posed by John Milnor in 1968 about the existence of finitely generated groups of intermediate growth. Grigorchuk's group has a number of other remarkable mathematical properties. It is a finitely generated infinite residually finite2-group. It is also the first example of a finitely generated group that is amenable but not elementary amenable, thus providing an answer to another long-standing problem, posed by Mahlon Day in 1957. Also Grigorchuk's group is "just infinite": that is, it is infinite but every proper quotient of this group is finite. Grigorchuk's group is a central object in the study of the so-called branch groups and automata groups. These are finitely generated groups of automorphisms of rooted trees that are given by particularly nice recursive descriptions and that have remarkable self-similar properties. The study of branch, automata and self-similar groups has been particularly active in the 1990s and 2000s and a number of unexpected connections with other areas of mathematics have been discovered there, including dynamical systems, differential geometry, Galois theory, ergodic theory, random walks, fractals, Hecke algebras, bounded cohomology, functional analysis, and others. In particular, many of these self-similar groups arise as iterated monodromy groups of complex polynomials. Important connections have been discovered between the algebraic structure of self-similar groups and the dynamical properties of the polynomials in question, including encoding their Julia sets. Much of Grigorchuk's work in the 1990s and 2000s has been on developing the theory of branch, automata and self-similar groups and on exploring these connections. For example, Grigorchuk, with co-authors, obtained a counter-example to the conjecture of Michael Atiyah about L2-betti numbers of closed manifolds. Grigorchuk is also known for his contributions to the general theory of random walks on groups and the theory of amenable groups, particularly for obtaining in 1980 what is commonly known as Grigorchuk's co-growth criterion of amenability for finitely generated groups.
Awards and honors
In June 2003 an international group theory conference in honor of Grigorchuk's 50th birthday was held in Gaeta, Italy. Special anniversary issues of the "International Journal of Algebra and Computation" and of the journal "Algebra and Discrete Mathematics" were dedicated to Grigorchuk's 50th birthday. In 2012 he became a fellow of the American Mathematical Society. In 2015 Rostislav Grigorchuk was awarded the AMS Leroy P. Steele Prize for Seminal Contribution to Research.