Room-temperature superconductor
A room-temperature superconductor is a material that is capable of exhibiting superconductivity at operating temperatures above. While this is not strictly "room temperature", which would be approximately, it is the temperature at which ice forms, and can be reached and easily maintained in an everyday environment. the material with the highest accepted superconducting temperature is highly pressurized lanthanum decahydride, whose transition temperature is approximately. Previously the record was held by hydrogen sulfide, which has demonstrated superconductivity under high pressure at temperatures as high as. By substituting a small part of sulfur in the latter with phosphorus and using even higher pressures, it has been predicted that it might be possible to raise the critical temperature to above 0 °C and achieve room-temperature superconductivity. Part of the research efforts are currently moving towards ternary superhydrides, where it has been predicted that Li2MgH16 would have a of at 250 GPa. At atmospheric pressure the record is still held by cuprates, which have demonstrated superconductivity at temperatures as high as.
Although some researchers doubt whether room-temperature superconductivity is actually achievable, superconductivity has repeatedly been discovered at temperatures that were previously unexpected or held to be impossible.
Claims of "near-room temperature" transient effects date from the early 1950s. Finding a room temperature superconductor "would have enormous technological importance and, for example, help to solve the world's energy problems, provide for faster computers, allow for novel memory-storage devices, and enable ultra-sensitive sensors, among many other possibilities."
Reports
Since the discovery of high-temperature superconductors, several materials have been reported to be room-temperature superconductors, although none of these reports has been confirmed.In 2000, while extracting electrons from diamond during ion implantation work, Johan Prins claimed to have observed a phenomenon that he explained as room-temperature superconductivity within a phase formed on the surface of oxygen-doped type IIa diamonds in a vacuum.
In 2003, a group of researchers published results on high-temperature superconductivity in palladium hydride and an explanation in 2004. In 2007 the same group published results suggesting a superconducting transition temperature of 260 K. The superconducting critical temperature increases as the density of hydrogen inside the palladium lattice increases. This work has not been corroborated by other groups.
In 2012, an Advanced Materials article claimed superconducting behavior of graphite powder after treatment with pure water at temperatures as high as 300 K and above. So far, the authors have not been able to demonstrate the occurrence of a clear Meissner phase and the vanishing of the material's resistance.
In 2014, an article published in Nature suggested that some materials, notably YBCO, could be made to superconduct at room temperature using infrared laser pulses.
In 2015, an article published in Nature by researchers of the Max Planck Institute suggested that under certain conditions such as extreme pressure H2S transitioned to a superconductive form H3S at around 1.5 million times atmospheric pressure in a diamond anvil cell. The critical temperature is 203 K which would be the highest Tc ever recorded and their research suggests that other hydrogen compounds could superconduct at up to 260 K which would match up with the original research of Ashcroft.
In 2018, Dev Kumar Thapa and Anshu Pandey from the Solid State and Structural Chemistry Unit of the Indian Institute of Science in Bangalore claimed the observation of superconductivity at ambient pressure and room temperature in films and pellets of a nanostructured material that is composed of silver particles embedded in a gold matrix. Due to similar noise patterns of supposedly independent plots and the publication's lack of peer review, the results have been called into question. Although the researchers validated their findings in a later paper in 2019, this claim is yet to be verified and confirmed.
Also in 2018, researchers noted a possible superconducting phase at in lanthanum decahydride at elevated pressure.
Other research also suggests a link between the palladium hydride containing small impurities of sulfur nanoparticles as a plausible explanation for the anomalous transient resistance drops seen during some experiments, and hydrogen absorption by cuprates has been suggested in light of the recent results in H2S as a plausible explanation for transient resistance drops or "USO" noticed in the 1990s by Chu et al. during research after the discovery of YBCO. It is also possible that if the bipolaron explanation is correct then under some conditions a normally semiconducting material can transition into a superconductor if a critical level of alternating spin coupling in a single plane within the lattice is exceeded and this may have been documented in very early experiments from 1986. The best analogy here would be anisotropic magnetoresistance but in this case the outcome is a drop to zero rather than a decrease within a very narrow temperature range for the compound tested similar to "re-entrant superconductivity.
Further support for anomalous 3/2 spin states is found in though YPtBi is a relatively low temperature material it does suggest proof of concept. It has also recently been discovered that many superconductors including the cuprates and iron pnictides have two or more competing mechanisms fighting for dominance ie Charge density wave and excitonic states so, as with organic light emitting diodes and other quantum systems adding the right spin catalyst may by itself increase Tc: a possible candidate would be iridium or gold IrAu placed in some of the adjacent molecules or as a thin surface layer so the correct mechanism then propagates throughout the entire lattice similar to a phase transition. As yet this is speculative however some efforts have been made notably adding Pb to BSCCO which is well known to help promote high Tc phases by chemistry alone though relativistic effects similar to those found in lead-acid batteries might be responsible suggesting that a similar mechanism in Hg or Tl based cuprates may be possible using a related metal ie tin.
Any such catalyst would need to be nonreactive chemically but have properties that affect one mechanism but not the others, and also not interfere with subsequent annealing and oxygenation steps nor change the lattice resonances excessively. A possible workaround for the issues discussed would be to use strong electrostatic fields to hold the molecules in place during one of the steps until the lattice is formed.
Also relevant to the above discussion: which suggests tentatively that a sufficiently complex lattice with the right internal geometry could indeed superconduct well above the "official" maximum ever observed for cuprates ie 153K if indeed flowing bipolarons composed of two electrons and two holes are able to sustain a supercurrent.
Theories
Theoretical work by Neil Ashcroft predicted that solid metallic hydrogen at extremely high pressure should become superconducting at approximately room-temperature because of its extremely high speed of sound and expected strong coupling between the conduction electrons and the lattice vibrations. This prediction is yet to be experimentally verified, as yet the pressure to achieve metallic hydrogen is not known but may be of the order of 500 GPa.A team at Harvard has claimed to make metallic hydrogen and reports a pressure of 495 GPa. Though the exact critical temperature has not yet been determined, weak signs of a possible Meissner effect and changes in magnetic susceptibility at 250K may have appeared in early magnetometer tests on the original now-lost sample and is being analyzed by the French team working with doughnut shapes rather than planar at the diamond culet tips.
In 1964, William A. Little proposed the possibility of high temperature superconductivity in organic polymers. This proposal is based on the exciton-mediated electron pairing, as opposed to phonon-mediated pairing in BCS theory. This may have inadvertently been confirmed by OLED experiments where light emission due to recombination happens after several non emissive steps so a crossover between OLED and condensed matter physics is quite possible. This link was suggested by an independent researcher and as yet has not been peer reviewed.
It is also possible that advanced magnetic scanners may be able to detect weak signs of the Meissner effect in materials not previously tested, one example is an atomic magnetometer based on a rubidium or cesium nuclear resonance chamber.