Right-hand rule


In mathematics and physics, the right-hand rule is a common mnemonic for understanding orientation of axes in three-dimensional space.
Most of the various left- and right-hand rules arise from the fact that the three axes of three-dimensional space have two possible orientations. One can see this by holding one's hands outward and together, palms up, with the fingers curled, and the thumb out-stretched. If the curl of the fingers represents a movement from the first or x-axis to the second or y-axis, then the third or z-axis can point along either thumb. Left- and right-hand rules arise when dealing with coordinate axes, rotation, spirals, electromagnetic fields, mirror images, and enantiomers in mathematics and chemistry.

Curve orientation and normal vectors

In vector calculus, it is often necessary to relate the normal to a surface to the curve bounding it. For a positively-oriented curve bounding a surface, the normal to the surface is defined such that the right thumb points in the direction of, and the fingers curl along the orientation of the bounding curve.

Coordinates

Coordinates are usually right-handed.
For right-handed coordinates the right thumb points along the Z axis in the positive direction and the curl of the fingers represents a motion from the first or X axis to the second or Y axis. When viewed from the top or Z axis the system is counter-clockwise.
For left-handed coordinates the left thumb points along the Z axis in the positive direction and the curled fingers of the left hand represent a motion from the first or X axis to the second or Y axis. When viewed from the top or Z axis the system is clockwise.
Interchanging the labels of any two axes reverses the handedness. Reversing the direction of one axis also reverses the handedness. Reversing two axes amounts to a 180° rotation around the remaining axis.

Rotations

A rotating body

In mathematics, a rotating body is commonly represented by a vector along the axis of rotation. The length of the vector gives the speed of rotation and the direction of the axis gives the direction of rotation according to the right-hand rule: right fingers curled in the direction of rotation and the right thumb pointing in the positive direction of the axis. This allows some easy calculations using the vector cross product. No part of the body is moving in the direction of the axis arrow. By coincidence, if the thumb is pointing north, Earth rotates in a prograde direction according to the right-hand rule. This causes the Sun, Moon, and stars to appear to revolve westward according to the left-hand rule.

Helices and screws

A helix is a curved line formed by a point rotating around a center while the center moves up or down the Z-axis. Helices are either right- or left-handed, curled fingers giving the direction of rotation and thumb giving the direction of advance along the Z-axis.

The threads of a screw are a helix and therefore screws can be right- or left-handed. The rule is this: if a screw is right-handed point your right thumb in the direction you want the screw to go and turn the screw in the direction of your curled right fingers.

Electromagnetics

right-hand grip rule is used either when a vector must be defined to represent the rotation of a body, a magnetic field, or a fluid, or vice versa, when it is necessary to define a rotation vector to understand how rotation occurs. It reveals a connection between the current and the magnetic field lines in the magnetic field that the current created.
André-Marie Ampère, a French physicist and mathematician, for whom the rule was named, was inspired by Hans Christian Ørsted, another physicist who experimented with magnet needles. Ørsted observed that the needles swirled when in the proximity of an electric current-carrying wire, and concluded that electricity could create magnetic fields.

Application

This rule is used in two different applications of Ampère's circuital law:
  1. An electric current passes through a straight wire. When the thumb is pointed in the direction of conventional current, the curled fingers will then point in the direction of the magnetic flux lines around the conductor. The direction of the magnetic field is a result of this convention and not an underlying physical phenomenon.
  2. An electric current passes through a solenoid, resulting in a magnetic field. When wrapping the right hand around the solenoid with the fingers in the direction of the conventional current, the thumb points in the direction of the magnetic north pole.

    Cross products

The cross product of two vectors is often taken in physics and engineering. For example, in statics and dynamics, torque is the cross product of lever length and force, while angular momentum is the cross product of linear momentum and distance. In electricity and magnetism, the force exerted on a moving charged particle when moving in a magnetic field B is given by:
The direction of the cross product may be found by application of the right hand rule as follows:
  1. The index finger points in the direction of the velocity vector v.
  2. The middle finger points in the direction of the magnetic field vector B.
  3. The thumb points in the direction of the cross product F.
For example, for a positively charged particle moving to the North, in a region where the magnetic field points West, the resultant force points up.

Applications

The right hand rule is in widespread use in physics. A list of physical quantities whose directions are related by the right-hand rule is given below.