Retirement planning, in a financial context, refers to the allocation of savings or revenue for retirement. The goal of retirement planning is to achieve financial independence. The process of retirement planning aims to:
Assess readiness-to-retire given a desired retirement age and lifestyle, i.e., whether one has enough money to retire
Producers such as a financial planner or financial adviser can help clients develop retirement plans, where compensation is either fee-based or commissioned contingent on product sale; see Professional certification in financial services. Such an arrangement is sometimes viewed as in conflict with a consumer's interest, and that the advice rendered cannot be without bias, or at a cost that justifies its value. Consumers can now elect a do it yourself approach. For example, retirement web-tools in the form of a calculator, mathematical model or decision support system are available online. A web-based tool that allows client to fully plan, without human intervention, might be considered a producer. Key motivations of the DIY trend are many of the same arguments for lean manufacturing, a constructive alteration of the relationship between producer and consumer.
Prepare mentally and plan to involve in hobbies and develop new interests to be engaged with retirement life.
Plan and prepare for the transition impact of retirement with home life.
Plan how active you want to be when you reach retirement age, engage in part-time, contract work or in activities that doesn't overextend oneself.
Stay connected with the community.
Learning to appreciate leisure, moderating work-life balance and to say no without regrets.
Modeling and limitations
Retirement finances touch upon distinct subject areas or financial domains of client importance, including: investments ; real estate; debt; taxes; cash flow analysis; insurance; defined benefits. From an analytic perspective, each domain can be formally characterized and modeled using a different class representation, as defined by a domain's unique set of attributes and behaviors. Domain models require definition only at a level of abstraction necessary for decision analysis. Since planning is about the future, domains need to extend beyond current state description and address uncertainty, volatility, change dynamics. Together, these factors raise significant challenges to any current producer claim of model predictability or certainty.
The Monte Carlo method is the most common form of a mathematical model that is applied to predict long-term investment behavior for a client's retirement planning. Its use helps to identify adequacy of client's investment to attain retirement readiness and to clarify strategic choices and actions. Yet, the investment domain is only a financial domain and therefore is incomplete. Depending on client context, the investment domain may have very little importance in relation to a client's other domains—e.g., a client who is predisposed to the use of real estate as a primary source of retirement funding.
Other models
Contemporary retirement planning models have yet to be validated in the sense that the models purport to project a future that has yet to manifest itself. The criticism with contemporary models are some of the same levied against Neoclassical economics. The critic argues that contemporary models may only have proven validity retrospectively, whereas it is the indeterminate future that needs solution. A more moderate school believes that retirement planning methods must further evolve by adopting a more robust and integrated set of tools from the field of complexity science. Recent research has explored the effects of the elimination of capital income taxes on saving-for-retirement opportunities and its impact on government debt.