A refractory material or refractory is a material that is resistant to decomposition by heat, pressure, or chemical attack, and retains strength and form at high temperatures. Refractories are inorganic, nonmetallic, porous, and heterogeneous. They are typically composed of oxides of the following materials: silicon, aluminium, magnesium, calcium, and zirconium. ASTM C71 defines refractories as "...non-metallic materials having those chemical and physical properties that make them applicable for structures, or as components of systems, that are exposed to environments above." Refractory materials are used in furnaces, kilns, incinerators, and reactors. Refractories are also used to make crucibles and moulds for casting glass and metals and for surfacing flame deflector systems for rocket launch structures. Today, the iron- and steel-industry and metal casting sectors use approximately 70% of all refractories produced.
Refractory materials
Refractory materials must be chemically and physically stable at high temperatures. Depending on the operating environment, they must be resistant to thermal shock, be chemically inert, and/or have specific ranges of thermal conductivity and of the coefficient of thermal expansion. The oxides of aluminium, silicon and magnesium are the most important materials used in the manufacturing of refractories. Another oxide usually found in refractories is the oxide of calcium. Fire clays are also widely used in the manufacture of refractories. Refractories must be chosen according to the conditions they face. Some applications require special refractory materials. Zirconia is used when the material must withstand extremely high temperatures. Silicon carbide and carbon are two other refractory materials used in some very severe temperature conditions, but they cannot be used in contact with oxygen, as they would oxidize and burn. Binary compounds such as tungsten carbide or boron nitride can be very refractory. Hafnium carbide is the most refractory binary compound known, with a melting point of 3890 °C. The ternary compoundtantalum hafnium carbide has one of the highest melting points of all known compounds.
Uses
Refractory materials are useful for the following functions:
Serving as a thermal barrier between a hot medium and the wall of a containing vessel
Withstanding physical stresses and preventing erosion of vessel walls due to the hot medium
Protecting against corrosion
Providing thermal insulation
Refractories have multiple useful applications. In the metallurgy industry, refractories are used for lining furnaces, kilns, reactors, and other vessels which hold and transport hot mediums such as metal and slag. Refractories have other high temperature applications such as fired heaters, hydrogen reformers, ammonia primary and secondary reformers, cracking furnaces, utility boilers, catalytic cracking units, air heaters, and sulfur furnaces.
Classification of refractory materials
Refractories are classified in multiple ways, based on:
Acidic refractories are generally impervious to acidic materials but easily attacked by basic materials, and are thus used with acidic slag in acidic environments. They include substances such as silica, alumina, and fire clay brick refractories. Notable reagents that can attack both alumina and silica are hydrofluoric acid, phosphoric acid, and fluorinated gases. At high temperatures, acidic refractories may also react with limes and basic oxides.
Silica refractories are refractories containing more than 93% silicon oxide. They are acidic, have high resistance to thermal shock, flux and slag resistance, and high spalling resistance. Silica bricks are often used in the iron and steel industry as furnace materials. An important property of silica brick is its ability to maintain hardness under high loads until its fusion point.
Zirconia refractories are refractories primarily composed of zirconium oxide. They are often used for glass furnaces because they have low thermal conductivity, are not easily wetted by molten glass and have low reactivity with molten glass. These refractories are also useful for applications in high temperature construction materials.
Aluminosilicate refractories mainly consist of alumina and silica. Aluminosilicate refractories can be semiacidic, fireclay composite, or high alumina content composite.
Basic refractories
Basic refractories are used in areas where slags and atmosphere are basic. They are stable to alkaline materials but can react to acids. The main raw materials belong to the RO group, of which magnesia is a common example. Other examples include dolomite and chrome-magnesia. For the first half of the twentieth century, the steel making process used artificial periclase as a furnace lining material.
Magnesite refractories are composed of ≥ 85% magnesium oxide. They have high slag resistance to lime and iron-rich slags, strong abrasion and corrosion resistance, and high refractoriness under load, and are typically used in metallurgical furnaces.
Dolomite refractories mainly consist of calcium magnesium carbonate. Typically, dolomite refractories are used in converter and refining furnaces.
Magnesia-chrome refractories mainly consist of magnesium oxide and chromium oxide. These refractories have high refractoriness and have a high tolerance for corrosive environments.
Neutral refractories
These are used in areas where slags and atmosphere are either acidic or basic and are chemically stable to both acids and bases. The main raw materials belong to, but are not confined to, the R2O3 group. Common examples of these materials are alumina, chromia and carbon.
Carbon graphite refractories mainly consist of carbon. These refractories are often used in highly reducing environments, and their properties of high refractoriness allow them excellent thermal stability and resistance to slags.
Chromite refractories are composed of sintered magnesia and chromia. They have constant volume at high temperatures, high refractoriness, and high resistance to slags.
Alumina refractories are composed of ≥ 50% alumina.
Based on method of manufacture
Dry press process
Fused cast
Hand molded
Formed
Un-formed
Un-formed dry refractories.
Shaped
These have standard size and shapes. These may be further divided into standard shapes and special shapes. Standard shapes have dimension that are conformed by most refractory manufacturers and are generally applicable to kilns or furnaces of the same types. Standard shapes are usually bricks that have a standard dimension of 9 inches and this dimension is called a "one brick equivalent". "Brick equivalents" are used in estimating how many refractory bricks it takes to make an installation into an industrial furnace. There are ranges of standard shapes of different sizes manufactured to produce walls, roofs, arches, tubes and circular apertures etc. Special shapes are specifically made for specific locations within furnaces and for particular kilns or furnaces. Special shapes are usually less dense and therefore less hard wearing than standard shapes.
Unshaped (monolithic refractories)
These are without definite form and are only given shape upon application. These types are better known as monolithic refractories. The common examples are plastic masses, Ramming masses, castables, gunning masses, fettling mix, mortars etc. Dry vibration linings often used in Induction furnace linings are also monolithic, and sold and transported as a dry powder, usually with a magnesia/alumina composition with additions of other chemicals for altering specific properties. They are also finding more applications in blast furnace linings, although this use is still rare.
Refractory materials are classified into three types based on fusion temperature.
Normal refractories have a fusion temperature of 1580 ~ 1780 °C
High refractories have a fusion temperature of 1780 ~ 2000 °C
Super refractories have a fusion temperature of > 2000 °C
Based on refractoriness
Refractoriness is the property of a refractory's multiphase to reach a specific softening degree at high temperature without load, and is measured with a pyrometric cone equivalent test. Refractories are classified as:
Super duty: PCE value of 33–38
High duty: PCE value of 30–33
Intermediate duty: PCE value of 28–30
Low duty: PCE value of 19–28
Based on thermal conductivity
Refractories may be classified by thermal conductivity as either conducting, nonconducting, or insulating. Examples of conducting refractories are SiC and ZrC, whereas examples of nonconducting refractories are silica and alumina. Insulating refractories include calcium silicate materials, kaolin, and zirconia. Insulating refractories are used to reduce the rate of heat loss through furnace walls. These refractories have low thermal conductivity due to a high degree of porosity, with a desired porous structure of small, uniform pores evenly distributed throughout the refractory brick in order to minimize thermal conductivity. Insulating refractories can be further classified into four types:
Refractory insulating materials with application temperatures ≤ 1400 ºC
High refractory insulating materials with application temperatures ≤ 1700 ºC
Ultra-high refractory insulating materials with application temperatures ≤ 2000 ºC
Refractory anchorage
All refractories require anchorage systems such as wire formed anchors, formed metal or ceramic tiles to support the refractory linings. The anchorage used for refractories on roofs and vertical walls are more critical as they must remain able to support the weight of refractories even at the elevated temperatures and operating conditions. The commonly used anchorages have circular or rectangular cross-sections. Circular cross-sections are used for low thickness refractory and they support less weight per unit area; whereas the rectangular cross-section is used for high thickness refractory and can support higher weight of refractory per unit area. The number of anchors depends on operating conditions and the refractory materials. The choice of an anchor's material, shape, quantity, and size has significant impact on the useful life of the refractory.