Refractive error


Refractive error, also known as refraction error, is a problem with focusing light accurately on the retina due to the shape of the eye. The most common types of refractive error are near-sightedness, far-sightedness, astigmatism, and presbyopia. Near-sightedness results in far away objects being blurry, far-sightedness and presbyopia result in close objects being blurry, and astigmatism causes objects to appear stretched out or blurry. Other symptoms may include double vision, headaches, and eye strain.
Near-sightedness is due to the length of the eyeball being too long, far-sightedness the eyeball too short, astigmatism the cornea being the wrong shape, and presbyopia aging of the lens of the eye such that it cannot change shape sufficiently. Some refractive errors occur more often among those whose parents are affected. Diagnosis is by eye examination.
Refractive errors are corrected with eyeglasses, contact lenses, or surgery. Eyeglasses are the easiest and safest method of correction. Contact lenses can provide a wider field of vision; however they are associated with a risk of infection. Refractive surgery permanently changes the shape of the cornea.
The number of people globally with refractive errors has been estimated at one to two billion. Rates vary between regions of the world with about 25% of Europeans and 80% of Asians affected. Near-sightedness is the most common disorder. Rates among adults are between 15-49% while rates among children are between 1.2-42%. Far-sightedness more commonly affects young children and the elderly. Presbyopia affects most people over the age of 35.
The number of people with refractive errors that have not been corrected was estimated at 660 million in 2013. Of these 9.5 million were blind due to the refractive error. It is one of the most common causes of vision loss along with cataracts, macular degeneration, and vitamin A deficiency.

Classification

An eye that has no refractive error when viewing distant objects is said to have emmetropia or be emmetropic meaning the eye is in a state in which it can focus parallel rays of light on the retina, without using any accommodation. A distant object in this case is defined as an object located beyond 6 meters, or 20 feet, from the eye, since the light from those objects arrives as essentially parallel rays when considering the limitations of human perception.
An eye that has refractive error when viewing distant objects is said to have ametropia or be ametropic. This eye cannot focus parallel rays of light on the retina, or needs accommodation to do so.
The word "ametropia" can be used interchangeably with "refractive error". Types of ametropia include myopia, hyperopia and astigmatism. They are frequently categorized as spherical errors and cylindrical errors:
Other terminology include anisometropia, when the two eyes have unequal refractive power, and aniseikonia which is when the magnification power between the eyes differ.
The optical powers of glasses can be used to describe an individual's eyes; or a more subjective quantity visual acuity may be used, but there is no direct or exact conversion between the two.

Risk factors

Genetics

There is evidence to suggest genetic predilection for refractive error. Individuals that have parents with certain refractive errors are more likely to have similar refractive errors.
The Online Mendelian Inheritance in Man database has listed 261 genetic disorders in which myopia is one of the symptoms. Myopia may be present in heritable connective tissue disorders such as: Knobloch syndrome ; Marfan syndrome ; and Stickler syndrome. Myopia has also been reported in X-linked disorders caused by mutations in loci involved in retinal photoreceptor function such as: autosomal recessive congenital stationary night blindness ; retinitis pigmentosa 2 ; Bornholm eye disease.
Many genes that have been associated with refractive error are clustered into common biological networks involved in connective tissue growth and extracellular matrix organization. Although a large number of chromosomal localisations have been associated with myopia, few specific genes have been identified.

Environmental

In studies of the genetic predisposition of refractive error, there is a correlation between environmental factors and the risk of developing myopia. Myopia has been observed in individuals with visually intensive occupations. Reading has also been found to be a predictor of myopia in children. It has been reported that children with myopia spent significantly more time reading than non-myopic children who spent more time playing outdoors. Socioeconomic status and higher levels of education have also been reported to be a risk factor for myopia.

Diagnosis

Blurry vision may result from any number of conditions not necessarily related to refractive errors. The diagnosis of a refractive error is usually confirmed by an eye care professional during an eye examination using a large number of lenses of different optical powers, and often a retinoscope to measure objectively in which the person views a distant spot while the clinician changes the lenses held before the person's eye and watches the pattern of reflection of a small light shone on the eye. Following that "objective refraction" the clinician typically shows the person lenses of progressively higher or weaker powers in a process known as subjective refraction.
Cycloplegic agents are frequently used to more accurately determine the amount of refractive error, particularly in children
An automated refractor is an instrument that is sometimes used in place of retinoscopy to objectively estimate a person's refractive error. Shack–Hartmann wavefront sensor and its inverse can also be used to characterize eye aberrations in a higher level of resolution and accuracy.
Vision defects caused by refractive error can be distinguished from other problems using a pinhole occluder, which will improve vision only in the case of refractive error.

Management

How refractive errors are treated or managed depends upon the amount and severity of the condition. Those who possess mild amounts of refractive error may elect to leave the condition uncorrected, particularly if the person is asymptomatic. For those who are symptomatic, glasses, contact lenses, refractive surgery, or a combination of the three are typically used.
Strategies being studied to slow worsening include adjusting working conditions, increasing the time children spend outdoors, and special types of contact lenses. In children special contact lenses appear to slow worsening of nearsightedness.
A number of questionnaires exist to determine quality of life impact of refractive errors and their correction.

Epidemiology

The number of people globally with refractive errors that have not been corrected was estimated at 660 million in 2013.
The number of people globally with significant refractive errors has been estimated at one to two billion. Rates vary between regions of the world with about 25% of Europeans and 80% of Asians affected. Near-sightedness is one of the most prevalent disorders of the eye. Rates among adults are between 15-49% while rates among children are between 1.2-42%. Far-sightedness more commonly affects young children, whose eyes have yet to grow to their full length, and the elderly, who have lost the ability to compensate with their accommodation system. Presbyopia affects most people over the age of 35, and nearly 100% of people by the ages of 55-65. Uncorrected refractive error is responsible for visual impairment and disability for many people worldwide. It is one of the most common causes of vision loss along with cataracts, macular degeneration, and vitamin A deficiency.

Cost

The yearly cost of correcting refractive errors is estimated at 3.9 to 7.2 billion dollars in the United States.