Reflective subcategory


In mathematics, a full subcategory A of a category B is said to be reflective in B when the inclusion functor from A to B has a left adjoint. This adjoint is sometimes called a reflector, or localization. Dually, A is said to be coreflective in B when the inclusion functor has a right adjoint.
Informally, a reflector acts as a kind of completion operation. It adds in any "missing" pieces of the structure in such a way that reflecting it again has no further effect.

Definition

A full subcategory A of a category B is said to be reflective in B if for each B-object B there exists an A-object and a B-morphism such that for each B-morphism to an A-object there exists a unique A-morphism with.
The pair is called the A-reflection of B. The morphism is called the A-reflection arrow..
This is equivalent to saying that the embedding functor is a right adjoint. The left adjoint functor is called the reflector. The map is the unit of this adjunction.
The reflector assigns to the A-object and for a B-morphism is determined by the commuting diagram
If all A-reflection arrows are epimorphisms, then the subcategory A is said to be epireflective. Similarly, it is bireflective if all reflection arrows are bimorphisms.
All these notions are special case of the common generalization—-reflective subcategory, where is a class of morphisms.
The -reflective hull of a class A of objects is defined as the smallest -reflective subcategory containing A. Thus we can speak about reflective hull, epireflective hull, extremal epireflective hull, etc.
An anti-reflective subcategory is a full subcategory A such that the only objects of B that have an A-reflection arrow are those that are already in A.
Dual notions to the above-mentioned notions are coreflection, coreflection arrow, coreflective subcategory, coreflective hull, anti-coreflective subcategory.

Examples

Algebra