Red Sea–Dead Sea Water Conveyance
The Red Sea–Dead Sea Conveyance, sometimes called the Two Seas Canal, is a planned pipeline that runs from the coastal city of Aqaba by the Red Sea to the Lisan area in the Dead Sea. It will provide potable water to Jordan, Israel and the Palestinian territories, bring water with a high concentration of salts resulting from the desalination process to stabilise the Dead Sea water level, and generate electricity to support the energy needs of the project. The project is going to be carried out by Jordan and is entirely in Jordanian territory. The project will be financed by the governments of Jordan, Israel, and a number of international donors.
The water level in the Dead Sea is shrinking at a rate of more than one metre per year, and its surface area has shrunk by about 30% in the last 20 years. This is largely due to the diversion of over 90% of the water of the Jordan River. In the early 1960s, the river moved 1.5 billion cubic metres of water every year from the Sea of Galilee to the Dead Sea. Dams, canals, and pumping stations built by Israel, Jordan and Syria now divert water for crops and drinking, and have reduced the flow to about 100 million cubic metres a year, and even that mainly brackish water and sewage.
The decline of the Dead Sea level is creating major environmental problems, including sink holes and receding sea shores. Other routes for a conduit for the same objectives as the Red - Dead Conduit, including the Mediterranean–Dead Sea Canal, were proposed in Israel in the 1980s, but were discarded. The project costs $10 billion in all of its phases, with the first phase, which is slated to begin construction in 2021, will cost $1.1 billion. The Jordanian government is currently in the process of shortlisting consortiums and waiting for the final feasibility study, for which international funding would follow.
History
The connection of the seas by canal was first suggested in the mid-19th century by British officers who were looking for ways to circumvent the French-built Suez Canal and had not realized that the level of the Dead Sea is much lower. Later on, at the end of the 19th century, planners thought how to use the Jordan River water for irrigation and to bring sea water to the Dead Sea to create energy from its position of -390 m below sea level. One of those planners was the Zionist leader Theodor Herzl. The Red Sea-Dead Sea conduit was proposed at the end of the 1960s and was analysed as part of the peace process between Israel and Jordan. In the late 1990s a team headed by Refael Benvenisti working with Minister Shimon Peres as the Minister of Regional Cooperation suggested to establish the stabilization of the Dead Sea water level as a major objective of the project. It suggested building the project in stages in order to test the mixing of the two seas water phasing the big investment associated with the project. The project was called "the Peace conduit" and was proposed to be located on Jordanian territory for financial and implementation reasons.On May 9, 2005 Jordan, Israel and the Palestinian Authority signed an agreement to go ahead with a feasibility study for the Two Seas Canal. The agreement was signed on the Dead Sea by Jordanian Water Minister Raed Abu Soud, Israeli Infrastructure Minister Binyamin Ben-Eliezer and Palestinian Planning Minister Ghassan al-Khatib.
In June 2009, after a meeting with World Bank President Robert Zoellick, the Israeli Regional Cooperation Minister, Silvan Shalom, announced a pilot project to build a "pilot" pipe 180 km long from the Red Sea to the Dead Sea. The pipe would pump 200 million cubic metres per year. Half of this would be desalinated for Jordanian consumption and half put into the Dead Sea.
In October 2009 the Jordanian government announced that it would unilaterally tender a Jordan Red Sea Project. According to the government, this project could be considered as the first phase of the Red Sea–Dead Sea Project. The project is to be implemented by a private company under authority granted by the government. The project would also serve as an economic development project to create housing for 1.36 million people south of Amman, at the Southern end of the Dead Sea, north of Aqaba and in gated communities. Also, several tourist resorts would be created. It is divided into five phases. The first phase would include extraction of 400 million cubic metres of seawater per year, resulting in 210 million cubic metres/year of freshwater and 190 million cubic metres/year for discharge into the Dead Sea. The construction of the first phase is expected to take 7 years. In March 2011 the Ministry of Water and Irrigation short-listed six firms for the first phase of the project.
The World Bank has announced that it would release a feasibility study of water conveyance from the Red Sea to the Dead Sea together with an environmental and social assessment as well as a study of alternatives in early 2012. The alternatives studied include a restoration of the Jordan River to its natural flow and taking no action, as well as numerous other alternatives.
In August 2013, Jordanian government announced that it would move ahead with the first phase of a project. On December 9, 2013, an agreement to build the pipeline was signed by Israel, Jordan and Palestine. On June 21, 2016, Jordan announced that it received 17 bids from international firms to construct the canal.
On 27 November 2016, it was announced that the Jordanian government is shortlisting five consortiums to implement the project. Jordan's ministry of Water and Irrigation said that the $100 million first phase of the project will begin construction in the first quarter of 2018, and will be completed by 2021.
Project features and benefits
The proposed conveyance would pump seawater 230 meters uphill from the Red Sea's Gulf of Aqaba through the Arabah Valley in Jordan. The water would then flow down gravitationally through multiple pipelines to the area of the Dead Sea, followed by a drop through a penstock to the level of the Dead Sea near its shore, and then an open canal to the Sea itself, which lies about 420 meters below sea level. The project would utilize about 225 km of pipelines for seawater and brine, parallel to the Arabah Valley in Jordan.The project would also have about 178 km of freshwater pipelines to the Amman area. It also would include several water desalination plants and at least one hydroelectric plant. In its final phase, it would produce about 850 million cubic meters of freshwater per year.
The project would require electric power from the Jordanian power grid, but it would also provide some electricity through hydroelectric power. In the sum, this project would probably be a large net user of energy. The net power demand would have to be satisfied through other power projects whose costs are not included in the project costs. The Kingdom of Jordan plans to build a large nuclear power plant that might make up the difference.
Costs and financing
The project cost estimates vary from two to more than ten billion dollars depending on its structure and stages. The first phase of the Jordan Red Sea Project is expected to cost US$2.5 billion. It is expected to be financed to a large extent from commercial sources, including debt and equity and from soft international financing. As of January 2019, Israel is expected to contribute over one billion dollars over a period of 25 years.Environmental impact
The transfer of mass volumes of water from one sea to another can bear drastic consequences on the unique natural characteristics of each of the two seas, as well as the desert valley which separates them, the Arabah. Some of these characteristics, especially in the Dead Sea area, are unique on a global perspective, and therefore crucially important for conservation. The environmental group EcoPeace Middle East has protested against the allegedly premature approval of the project, without sufficient assessment of the project's impact on the natural environment of the area. The group lists several potential hazardous effects of the project on the unique natural systems of the Red Sea, the Dead Sea and the Arabah. These potential effects include:- Damage to the unique natural system of the Dead Sea, due to mixing its water with Red Sea water, or brines created from the process of desalinating Red Sea water which has a different chemical composition. This includes changes in water salinity, massive formation of gypsum, formation of volatile toxic compounds, change in water evaporation rates, changes in the composition of bacteria and algae which inhabit the sea surface, chemical changes in the rocks which surround the water, and loss of unique health benefits that account for much of the tourist attraction to the Dead Sea area.
- Damage to the coral reefs of the Gulf of Aqaba, due to water pumping.
- Damage to the natural landscape and ecosystem of the Arabah, due to the construction, and the increase in humidity caused by the open canal segments.
- Damage to the aquifer of the Arabah, due to contamination of groundwater with water from the Red Sea. The alluvial deposits in Wadi Araba contain important supplies of fresh water. In the event that the pipeline ruptures, these aquifers will be irreparably damaged. This can have fatal consequences to both the agriculture and ecosystem of the Arabah.
- Threats to archeological heritage. The pipeline will cross areas of important cultural heritage, such as Wadi Finan, where the earliest copper mining and extraction in the world took place.
The World Bank Study included environmental assessments carried out under the supervision of the World Bank by world-renowned experts found that the environmental risks of the project are manageable if the project is well planned and executed:
1. Damage to the unique natural system of the Dead Sea, due to mixing its water with Red Sea water. The report of: Tahal Group, The Geological Survey of Israel, Portland State University - Oregon, USA and Institute of Life Sciences - The Hebrew University of Jerusalem, stated:
- "In order to stabilize the Dead Sea level, more than 700 MCM/yr of additional water is needed.
- "The present conditions of the Dead Sea will be maintained at least up to inflow volume of about 400 MCM/yr".
- "Potential for biological blooming exists only when stratification develops and the upper mixed layer is diluted by at least 10%"
- "Once stratification develops and mixing occurs in the upper water column, there is a potential for "whitening"
- Stratification may develop above inflow of 500-600 MCM/yr.
- "The exchanges of water between the Gulf and the northern Red Sea through the Strait of Tiran are several orders of magnitude larger than those that would be induced by the proposed abstraction flows, such that the latter would likely be imperceptible except in the immediate vicinity of the sink. The expected effect of the abstraction on the heat budget of the gulf is also expected to be negligible".
- "Based on above assessments our findings are for a "go" decision, as long as the intake configuration, location, and depth are selected properly".
4. Damage to the aquifers of the Arabah due to contamination of groundwater with water from the Red Sea. The planning and construction of the pipelines will include measures to minimize the potential for pipeline ruptures.