Ranking


A ranking is a relationship between a set of items such that, for any two items, the first is either 'ranked higher than', 'ranked lower than' or 'ranked equal to' the second.
In mathematics, this is known as a weak order or total preorder of objects. It is not necessarily a total order of objects because two different objects can have the same ranking. The rankings themselves are totally ordered. For example, materials are totally preordered by hardness, while degrees of hardness are totally ordered. If two items are the same in rank it is considered a tie.
By reducing detailed measures to a sequence of ordinal numbers, rankings make it possible to evaluate complex information according to certain criteria. Thus, for example, an Internet search engine may rank the pages it finds according to an estimation of their relevance, making it possible for the user quickly to select the pages they are likely to want to see.
Analysis of data obtained by ranking commonly requires non-parametric statistics.

Strategies for assigning rankings

It is not always possible to assign rankings uniquely. For example, in a race or competition two entrants might tie for a place in the ranking. When computing an ordinal measurement, two of the quantities being ranked might measure equal. In these cases, one of the strategies shown below for assigning the rankings may be adopted.
A common shorthand way to distinguish these ranking strategies is by the ranking numbers that would be produced for four items, with the first item ranked ahead of the second and third which are both ranked ahead of the fourth. These names are also shown below.

Standard competition ranking ("1224" ranking)

In competition ranking, items that compare equal receive the same ranking number, and then a gap is left in the ranking numbers. The number of ranking numbers that are left out in this gap is one less than the number of items that compared equal. Equivalently, each item's ranking number is 1 plus the number of items ranked above it. This ranking strategy is frequently adopted for competitions, as it means that if two competitors tie for a position in the ranking, the position of all those ranked below them is unaffected.
Thus if A ranks ahead of B and C which are both ranked ahead of D, then A gets ranking number 1, B gets ranking number 2, C also gets ranking number 2 and D gets ranking number 4.

Modified competition ranking ("1334" ranking)

Sometimes, competition ranking is done by leaving the gaps in the ranking numbers before the sets of equal-ranking items. The number of ranking numbers that are left out in this gap remains one less than the number of items that compared equal. Equivalently, each item's ranking number is equal to the number of items ranked equal to it or above it. This ranking ensures that a competitor only comes second if they score higher than all but one of their opponents, third if they score higher than all but two of their opponents, etc.
Thus if A ranks ahead of B and C which are both ranked head of D, then A gets ranking number 1, B gets ranking number 3, C also gets ranking number 3 and D gets ranking number 4. In this case, nobody would get ranking number 2 and that would be left as a gap.

Dense ranking ("1223" ranking)

In dense ranking, items that compare equally receive the same ranking number, and the next item receive the immediately following ranking number. Equivalently, each item's ranking number is 1 plus the number of items ranked above it that are distinct with respect to the ranking order.
Thus if A ranks ahead of B and C which are both ranked ahead of D, then A gets ranking number 1, B gets ranking number 2, C also gets ranking number 2 and D gets ranking number 3.

Ordinal ranking ("1234" ranking)

In ordinal ranking, all items receive distinct ordinal numbers, including items that compare equal. The assignment of distinct ordinal numbers to items that compare equal can be done at random, or arbitrarily, but it is generally preferable to use a system that is arbitrary but consistent, as this gives stable results if the ranking is done multiple times. An example of an arbitrary but consistent system would be to incorporate other attributes into the ranking order to ensure that no two items exactly match.
With this strategy, if A ranks ahead of B and C which are both ranked ahead of D, then A gets ranking number 1 and D gets ranking number 4, and either B gets ranking number 2 and C gets ranking number 3 or C gets ranking number 2 and B gets ranking number 3.
In computer data processing, ordinal ranking is also referred to as "row numbering".

Fractional ranking ("1 2.5 2.5 4" ranking)

Items that compare equal receive the same ranking number, which is the mean of what they would have under ordinal rankings. Equivalently, the ranking number of 1 plus the number of items ranked above it plus half the number of items equal to it. This strategy has the property that the sum of the ranking numbers is the same as under ordinal ranking. For this reason, it is used in computing Borda counts and in statistical tests.
Thus if A ranks ahead of B and C which are both ranked ahead of D, then A gets ranking number 1, B and C each get ranking number 2.5 and D gets ranking number 4.
Here is an example:
Suppose you have the data set 1.0, 1.0, 2.0, 3.0, 3.0, 4.0, 5.0, 5.0, 5.0.
The ordinal ranks are 1, 2, 3, 4, 5, 6, 7, 8, 9.
For v = 1.0, the fractional rank is the average of the ordinal ranks: / 2 = 1.5.
In a similar manner, for v = 5.0, the fractional rank is / 3 = 8.0.
Thus the fractional ranks are: 1.5, 1.5, 3.0, 4.5, 4.5, 6.0, 8.0, 8.0, 8.0

Ranking in statistics

In statistics, ranking is the data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted. For example, the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of these data items would be 2, 3, 1 and 4 respectively. For example, the ordinal data hot, cold, warm would be replaced by 3, 1, 2. In these examples, the ranks are assigned to values in ascending order. Ranks are related to the indexed list of order statistics, which consists of the original dataset rearranged into ascending order.
Some kinds of statistical tests employ calculations based on ranks. Examples include:
The distribution of values in decreasing order of rank is often of interest when values vary widely in scale; this is the rank-size distribution, for example for city sizes or word frequencies. These often follow a power law.
Some ranks can have non-integer values for tied data values. For example, when there is an even number of copies of the same data value, the above described [|fractional statistical rank] of the tied data ends in ½.

Rank function in Excel

provides two ranking functions, the Rank.EQ function which assigns competition ranks and the Rank.AVG function which assigns fractional ranks as described above.

Comparison of rankings

A rank correlation can be used to compare two rankings for the same set of objects. For example, Spearman's rank correlation coefficient is useful to measure the statistical dependence between the rankings of athletes in two tournaments. Another example is the "Rank–rank hypergeometric overlap" approach, which is designed to compare ranking of the genes that are at the "top" of two ordered lists of differentially expressed genes.

Examples of ranking