Radiative cooling


Radiative cooling is the process by which a body loses heat by thermal radiation. As Planck's law describes, every physical body spontaneously and continuously emits electromagnetic radiation.

Terrestrial radiative cooling

Mechanism

Infrared radiation can pass through dry, clear air in the wavelength range of 8-13 µm. Materials that can absorb energy and radiate it in those wavelengths exhibit a strong cooling effect. Materials that can also reflect 95% or more of sunlight in the 200 nanometres to 2.5 µm range can exhibit cooling even in direct sunlight.

Earth's energy budget

The Earth-atmosphere system uses radiative cooling to emit long-wave radiation to balance the absorption of short-wave energy from the sun.
Convective transport of heat, and evaporative transport of latent heat are both important in removing heat from the surface and distributing it in the atmosphere. Pure radiative transport is more important higher up in the atmosphere. Diurnal and geographical variation further complicate the picture.
The large-scale circulation of the Earth's atmosphere is driven by the difference in absorbed solar radiation per square meter, as the sun heats the Earth more in the Tropics, mostly because of geometrical factors. The atmospheric and oceanic circulation redistributes some of this energy as sensible heat and latent heat partly via the mean flow and partly via eddies, known as cyclones in the atmosphere. Thus the tropics radiate less to space than they would if there were no circulation, and the poles radiate more; however in absolute terms the tropics radiate more energy to space.

Nocturnal surface cooling

Radiative cooling is commonly experienced on cloudless nights, when heat is radiated into space from the surface of the Earth, or from the skin of a human observer. The effect is well-known among amateur astronomers. The effect can be experienced by comparing skin temperature from looking straight up into a cloudless night sky for several seconds, to that after placing a sheet of paper between the face and the sky. Since outer space radiates at about a temperature of 3 kelvins, and the sheet of paper radiates at about 300 kelvins, the sheet of paper radiates more heat to the face than does the darkened cosmos. The effect is blunted by Earth's surrounding atmosphere, and particularly the water vapor it contains, so the apparent temperature of the sky is far warmer than outer space. The sheet does not block the cold; instead, the sheet reflects heat to the face and radiates the heat of the face that it just absorbed.
The same radiative cooling mechanism can cause frost or black ice to form on surfaces exposed to the clear night sky, even when the ambient temperature does not fall below freezing.

Kelvin's estimate of the Earth's age

The term radiative cooling is generally used for local processes, though the same principles apply to cooling over geological time, which was first to estimate the age of the Earth.

Astronomy

Radiative cooling is one of the few ways an object in space can give off energy. In particular, white dwarf stars are no longer generating energy by fusion or gravitational contraction, and have no solar wind. So the only way their temperature changes is by radiative cooling. This makes their temperature as a function of age very predictable, so by observing the temperature, astronomers can deduce the age of the star.

Applications

Nocturnal ice making in early India and Iran

In India before the invention of artificial refrigeration technology, ice making by nocturnal cooling was common. The apparatus consisted of a shallow ceramic tray with a thin layer of water, placed outdoors with a clear exposure to the night sky. The bottom and sides were insulated with a thick layer of hay. On a clear night the water would lose heat by radiation upwards. Provided the air was calm and not too far above freezing, heat gain from the surrounding air by convection was low enough to allow the water to freeze. A similar technique was used in Iran as well.

Architecture

s combine high solar reflectance with high infrared emittance, thereby simultaneously reducing heat gain from the sun and increasing heat removal through radiation. Radiative cooling thus offers potential for passive cooling for residential and commercial buildings. Traditional building surfaces, such as paint coatings, brick and concrete have high emittances of up to 0.96. Consequently, they radiate heat into the sky to passively cool buildings at night. If made sufficiently reflective to sunlight, these materials can also achieve radiative cooling during the day.
The most common radiative coolers found on buildings are white cool-roof paint coatings, which have solar reflectances of up to 0.94, and a thermal emittances of up to 0.96. The solar reflectance of the paints arises from optical scattering by the dielectric pigments embedded in the polymer paint resin, while the thermal emittance arises from the polymer resin. However, because typical white pigments like titanium dioxide and zinc oxide absorb ultraviolet radiation, the solar reflectances of paints based on such pigments do not exceed 0.95.
In 2014, researchers developed the first daytime radiative cooler using a multi-layer thermal photonic structure that selectively emits long wavelength infrared radiation into space, and can achieve 5 °C sub-ambient cooling under direct sunlight. Later researchers developed paintable porous polymer coatings, whose pores scatter sunlight to give solar reflectance of 0.96-0.99 and thermal emittance of 0.97. In experiments under direct sunlight, the coatings achieve 6 °C sub-ambient temperatures and cooling powers of 96 W/m2.
Other notable radiative cooling strategies include dielectric films on metal mirrors, and polymer or polymer composites on silver or aluminum films. Silvered polymer films with solar reflectances of 0.97 and thermal emittance of 0.96, which remain 11 °C cooler than commercial white paints under the mid-summer sun, were reported in 2015. Researchers explored designs with dielectric silicon dioxide or silicon carbide particles embedded in polymers that are translucent in the solar wavelengths and emissive in the infrared. In 2017, an example of this design with resonant polar silica microspheres randomly embedded in a polymeric matrix, was reported. The material is translucent to sunlight and has infrared emissivity of 0.93 in the infrared atmospheric transmission window. When backed with silver coating, the material achieved a midday radiative cooling power of 93 W/m2 under direct sunshine along with high-throughput, economical roll-to-roll manufacturing.