The name Rare isotope Accelerator complex for ON-line experiment or RAON, was selected through a contest open to the public in 2012. RAON comes from the Korean word 라온 meaning "happy" or "joyful". Among 639 entries, the winning name was actually Raonhaje meaning "happy tomorrow" but was shortened for easier pronunciation. RAON is also the name of their chemical element mascot with atomic number 41 and niobium written on the stomach.
Type
RAON is a heavy ionparticle accelerator that will include both ISOL and IF methods, and aims to be the first to use both. The superconducting linear accelerator will have a maximum beam power of 400 kW, and projectile fragmentation will be powered by a 200 MeV/u uranium beam in the IF system. The ISOL system will have a H- cyclotron of 70 kW. Due to the complexity of the project, RAON's researchers are working in collaboration with a number of other accelerator research groups, including CERN, Fermilab, TRIUMF, and Riken. The cost is estimated at 1.4523 trillion KRW in which 460.2 billion KRW is for device construction, 635 billion KRW for facility construction, and 357.1 billion KRW for land purchase. The size of the site is 652,066 m2 with a total floor area of 130,144 m2. In additional to the primary accelerator site under construction in Shindong, RISP has the ISOL Off-line Test Facility in Yuseong-gu, Superconducting Radio Frequency test facility in KAIST's Munji Campus, and the Accelerator and ICT Building in Korea University Sejong Campus.
KOrea Broad acceptance Recoil spectrometer and Apparatus : Study the production of nuclear structures and rare isotopes through the collisions of nuclei of rare isotopes and stable atoms
Large Acceptance Multi-Purpose Spectrometer : Observe the high density states of substances resulting from collisions of neutron-rich rare isotopes
Nuclear Data Production System : Produce precise atomic nuclear reaction data on rare isotope nuclear materials and high-speed neutrons
Physical science
The group aims to develop an ultra-sensitive device for measuring the physical properties of muons, and study the properties of new materials, including semiconductors, nano-magnetic materials, high-temperature superconductors, and topological insulators.
Muon Spin Relaxation : Use muons to research superconductivity, nano-magnetism, and topological insulation through measuring local electromagnetic properties
Atomic and molecular science
In these fields, they aim to precisely measure rare isotope mass and develop atomic manipulation technology, develop micro-measurement technology for atomic structures, and find the precise measurements of basic physical constants.
Mass Measurement System : Categorize rare isotopes and find new atoms through precise mass measurements
Collinear Laser Spectroscopy : Categorize rare isotopes and know their nuclear characteristics through the changes in their shapes and atomic energy levels
Biomedical science
Research the application of rare isotopes in cancer treatment.
Beam Irradiation System : Develop biomedical techniques for cancer treatment by exposing biological tissue samples to heavy-ion or rare isotope beams to selectively destroy cells and modify DNA