Pyrolysis oil


Pyrolysis oil, sometimes also known as biocrude or bio-oil, is a synthetic fuel under investigation as substitute for petroleum. It is obtained by heating dried biomass without oxygen in a reactor at a temperature of about 500 °C with subsequent cooling. Pyrolytic oil is a kind of tar and normally contains levels of oxygen too high to be considered a hydrocarbon. This high oxygen content results in non-volatility, corrosiveness, immiscibility with fossil fuels, thermal instability, and a tendency to polymerize when exposed to air. As such, it is distinctly different from petroleum products. Removing oxygen from bio-oil or nitrogen from algal bio-oil is called upgrading.

Standards

There are few standards for pyrolysis oil because of limited efforts to produce it. One of the few standards is from ASTM.

Feedstock decomposition

is a well established technique for decomposition of organic material at elevated temperatures in the absence of oxygen into oil and other constituents. In second-generation biofuel applications—forest and agricultural residues, wood waste and energy crops can be used as feedstock.

Wood Pyrolysis

When wood is heated above 270 °C it begins a process of decomposition called carbonization. If air is absent the final product, since there is no oxygen present to react with the wood, is charcoal. If air, which contains oxygen, is present, the wood will catch fire and burn when it reaches a temperature of about 400-500 °C and the fuel product is wood ash. If wood is heated away from air, first the moisture is driven off and until this is complete, the wood temperature remains at about 100-110 °C. When the wood is dry its temperature rises and at about 270 °C it begins to spontaneously decompose and, at the same time, heat is evolved. This is the well known exothermic reaction which takes place in charcoal burning. At this stage evolution of the by-products of wood carbonization starts. These substances are given off gradually as the temperature rises and at about 450 °C the evolution is complete.
The solid residue, charcoal, is mainly carbon and then of tarry substances which can be driven off or decomposed completely only by raising the temperature to above about 600 °C to produce Biochar, a high-carbon, fine-grained residue that today is produced through modern pyrolysis processes, which is the direct thermal decomposition of biomass in the absence of oxygen, which prevents combustion, to obtain an array of solid, liquid—Pyrolysis oil, and gas products. The specific yield from the pyrolysis is dependent on process conditions. such as temperature, and can be optimized to produce either energy or biochar. Temperatures of produce more char, while temperatures above favor the yield of liquid and gas fuel components. Pyrolysis occurs more quickly at the higher temperatures, typically requiring seconds instead of hours. High temperature pyrolysis is also known as gasification, and produces primarily syngas. Typical yields are 60% bio-oil, 20% biochar, and 20% syngas. By comparison, slow pyrolysis can produce substantially more char. Once initialized, both processes produce net energy. For typical inputs, the energy required to run a “fast” pyrolyzer is approximately 15% of the energy that it outputs. Modern pyrolysis plants can use the syngas created by the pyrolysis process and output 3–9 times the amount of energy required to run.

Algal Pyrolysis

Algae may be subjected to high temperatures and normal atmospheric pressures. The resultant products include oil and nutrients such as nitrogen, phosphorus, and potassium.
There are numerous papers on the pyrolysis of lignocellulosic biomass. However, very few reports are available for algal bio-oil production via pyrolysis. Miao et al. performed fast pyrolysis of Chllorella protothecoides and Microcystis areuginosa at 500 °C, and bio-oil yields of 18% and 24% were obtained, respectively. The bio-oil exhibited a higher carbon and nitrogen content, lower oxygen content than wood bio-oil. When
Chllorella protothecoides was cultivated heterotrophically, bio-oil yield increased to 57.9% with a heating value of 41 MJ/kg. Recently when microalgae become a hot research topic as the third generation of biofuel, pyrolysis has drawn more attention as a potential conversion method for algal biofuel production. Pan et al. investigated slow pyrolysis of Nannochloropsis sp. residue with and without the presence of HZSM-5 catalyst and obtained bio-oil rich in aromatic hydrocarbons from catalytic pyrolysis. Algal pyrolytic liquids separate into two phases with the top phase called bio-oil. The higher heating values of algal bio-oil are in the range of 31−36 MJ/kg, generally higher than those of lignocellulosic feedstocks. Pyrolytic bio-oil consists of compounds with lower mean molecular weights and contains more low boiling compounds than bio-oil produced by hydrothermal liquefaction. These properties are similar to those of Illinois shale oil, which may indicate that pyrolytic bio-oil is suited for petroleum fuel replacement. In addition, the high protein content in microalgae led to a high N content in the bio-oil, resulting in undesirable NOx emissions during combustion and deactivation of acidic catalysts when co-processed in existing 10 crude oil refineries. Algal bio-oil had better qualities in many aspects than those produced from lignocellulosic biomass. For example, algal bio-oil has a higher heating value, a lower oxygen content and a greater than 7 pH value. However, upgrading towards the removal of nitrogen and oxygen in the bio-oil is still necessary before it can be used as drop-in fuels.

Algal Hydrothermal Liquefaction

is a thermal depolymerization process used to convert wet biomass into an oil—sometimes referred to as bio-oil or biocrude—under a moderate temperature and high pressure of 350 °C and 3,000 pounds per square inch. The crude-like oil has high energy density with a lower heating value of 33.8-36.9 MJ/kg and 5-20 wt% oxygen and renewable chemicals.
The HTL process differs from pyrolysis as it can process wet biomass and produce a bio-oil that contains approximately twice the energy density of pyrolysis oil. Pyrolysis is a related process to HTL, but biomass must be processed and dried in order to increase the yield. The presence of water in pyrolysis drastically increases the heat of vaporization of the organic material, increasing the energy required to decompose the biomass. Typical pyrolysis processes require a water content of less than 40% to suitably convert the biomass to bio-oil. This requires considerable pretreatment of wet biomass such as tropical grasses, which contain a water content as high as 80-85%, and even further treatment for aquatic species, which can contain higher than 90% water content. Per Algal HTL, the properties of the resulting bio-oil are affected by temperature, reaction time, algae species, algae concentration, reaction atmosphere, and catalysts, in subcritical water reaction conditions.

Bio crude oil

Bio-oil typically requires significant additional treatment to render it suitable as a refinery feedstock to replace crude oil derived from petroleum, coal-oil, or coal-tar.
Tar is a black mixture of hydrocarbons and free carbon obtained from a wide variety of organic materials through destructive distillation. Tar can be produced from coal, wood, petroleum, or peat.
Wood-tar creosote is a colourless to yellowish greasy liquid with a smoky odor, produces a sooty flame when burned, and has a burned taste. It is non-buoyant in water, with a specific gravity of 1.037 to 1.087, retains fluidity at a very low temperature, and boils at 205-225 °C. When transparent, it is in its purest form. Dissolution in water requires up to 200 times the amount of water as the base creosote. The creosote is a combination of natural phenols: primarily guaiacol and creosol, which will typically constitute 50% of the oil; second in prevalence, cresol and xylenol; the rest being a combination of monophenols and polyphenols.
Pitch is a name for any of a number of viscoelastic polymers. Pitch can be natural or manufactured, derived from petroleum, coal tar or plants.
Black liquor and Tall oil is a viscous liquid by-product wood pulp manufacturing.
Rubber oil is the product of the pyrolysis method for recycling used tires.

Biofuel

s are synthesized from intermediary products such as syngas using methods that are identical in processes involving conventional feedstocks, first generation and second generation biofuels. The distinguishing feature is the technology involved in producing the intermediary product, rather than the ultimate off-take.
A Biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, heat, and value-added chemicals from biomass. The biorefinery concept is analogous to today's petroleum refinery, which produce multiple fuels and products from petroleum.