Pyranometer


A pyranometer is a type of actinometer used for measuring solar irradiance on a planar surface and it is designed to measure the solar radiation flux density from the hemisphere above within a wavelength range 0.3 μm to 3 μm. The name pyranometer stems from the Greek words πῦρ, meaning "fire", and ἄνω, meaning "above, sky".
A typical pyranometer does not require any power to operate. However, recent technical development includes use of electronics in pyranometers, which do require external power.

Explanation

The solar radiation spectrum that reaches earth's surface extends its wavelength approximately from 300 nm to 2800 nm.
Depending on the type of pyranometer used, irradiance measurements with different degrees of spectral sensitivity will be obtained.
To make a measurement of irradiance, it is required by definition that the response to “beam” radiation varies with the cosine of the angle of incidence. This ensures a full response when the solar radiation hits the sensor perpendicularly, zero response when the sun is at the horizon, and 0.5 at a 60° angle of incidence. It follows that a pyranometer should have a so-called “directional response” or “cosine response” that is as close as possible to the ideal cosine characteristic.

Types

Following the definitions noted in the ISO 9060, three types of pyranometer can be recognized and grouped in two different technologies: thermopile technology and silicon semiconductor technology.
The light sensitivity, known as 'spectral response', depends on the type of pyranometer. The figure here above shows the spectral responses of the three types of pyranometer in relation to the solar radiation spectrum. The solar radiation spectrum represents the spectrum of sunlight that reaches the Earth’s surface at sea level, at midday with A.M. = 1.5.

The latitude and altitude influence this spectrum. The spectrum is influenced also by aerosol and pollution.

Thermopile pyranometers

A thermopile pyranometer is a sensor based on thermopiles designed to measure the broad band of the solar radiation flux density from a 180° field of view angle. A thermopile pyranometer thus usually measures 300 to 2800 nm with a largely flat spectral sensitivity The first generation of thermopile pyranometers had the active part of the sensor equally divided in black and white sectors. Irradiation was calculated from the differential measure between the temperature of the black sectors, exposed to the sun, and the temperature of the white sectors, sectors not exposed to the sun or better said in the shades.
In all thermopile technology, irradiation is proportional to the difference between the temperature of the sun exposed area and the temperature of the shadow area.

Design

In order to attain the proper directional and spectral characteristics, a thermopile pyranometer is constructed with the following main components:
In the modern thermopile pyranometers the active junctions of the thermopile are located beneath the black coating surface and are heated by the radiation absorbed from the black coating. The passive junctions of the thermopile are fully protected from solar radiation and in thermal contact with the pyranometer housing, which serves as a heat-sink. This prevents any alteration from yellowing or decay when measuring the temperature in the shade, thus impairing the measure of the solar irradiance.
The thermopile generates a small voltage in proportion to the temperature difference between the black coating surface and the instrument housing. This is of the order of 10 µ • VW/m². Typically, on a sunny day the output is around 10 mV. Each pyranometer has a unique sensitivity, unless otherwise equipped with electronics for signal calibration.

Usage

Thermopile pyranometers are frequently used in meteorology, climatology, climate change research, building engineering physics, photovoltaic systems, and monitoring of photovoltaic power stations.
They are usually installed horizontally in meteorological stations and typically mounted in the 'plane of array' when used for monitoring of photovoltaic systems.
The solar energy industry, in a 2017 standard, IEC 61724-1:2017, has defined what type of pyranometers should be used depending on the size and category of solar power plant.

Photoelectric pyranometer - silicon photodiode

Also known as a photoelectric pyranometer in the ISO 9060, a photodiode-based pyranometer can detect the portion of the solar spectrum between 400 nm and 1100 nm. The photodiode converts the aforementioned solar spectrum frequencies into current at high speed, thanks to the photoelectric effect. The conversion is influenced by the temperature with a raise in current produced by the raise in temperature

Design

A photodiode-based pyranometer is composed by a housing dome, a photodiode, and a diffuser or optical filters. The photodiode has a small surface area and acts as a sensor. The current generated by the photodiode is proportional to irradiance; an output circuit, such as a transimpedance amplifier, generates a voltage directly proportional to the photocurrent. The output is usually on the order of millivolts, the same order of magnitude as thermopile-type pyranometers.

Usage

Photodiode-based pyranometers are implemented where the quantity of irradiation of the visible solar spectrum, or of certain portions such as UV, IR or PAR, needs to be calculated. This is done by using diodes with specific spectral responses.
Photodiode-based pyranometers are the core of luxmeters used in photography, cinema and lighting technique. Sometimes they are also installed close to modules of photovoltaic systems.

Photoelectric pyranometer - photovoltaic cell

Built around the 2000s concurrently with the spread of photovoltaic systems, the photovoltaic pyranometer is a derivation of the photodiode pyranometer. It answered the need for a single reference photovoltaic cell when measuring the power of cell and photovoltaic modules. Specifically, each cell and module is tested through flash tests by their respective manufacturers, and thermopile pyranometers do not possess the adequate speed of response nor the same spectral response of a cell. This would create obvious mismatch when measuring power, which would need to be quantified. In the technical documents, this pyranometer is also known as "reference PV cell".
The active part of the sensor is composed of a photovoltaic cell working in near short-circuit condition. As such, the generated current is directly proportionate to the solar radiation hitting the cell in a range between 350 nm and 1150 nm. When invested by a luminous radiation in the mentioned range, it produces current as a consequence of the photovoltaic effect. Its sensitivity is not flat, but it is same as that of Silicon photovoltaic cell. See the Spectral Response graph.

Design

A photovoltaic pyranometer is essentially assembled with the following parts:
Silicon sensors such as the photodiode and the photovoltaic cell vary the output in function of temperature. In the more recent models, the electronics compensate the signal with the temperature, therefore removing the influence of temperature out of the values of solar irradiance. Inside several models, the case houses a board for the amplification and conditioning of the signal.

Usage

Photovoltaic pyranometers are used in solar simulators and alongside photovoltaic systems for the calculation of photovoltaic module effective power and system performance. Because the spectral response of a photovoltaic pyranometer is similar to that of a photovoltaic module, it may also be used for preliminary diagnosis of malfunction in photovoltaic systems.

Standardization and calibration

Both thermopile-type and photovoltaic pyranometers are manufactured according to standards.

Thermopile pyranometers

Thermopile pyranometers follow the ISO 9060 standard, which is also adopted by the World Meteorological Organization. This standard discriminates three classes.
The latest version of , from 2018 uses the following classification: Class A for best performing, followed by Class B and Class C, while the older used ambiguous terms as "secondary standard", "first class" and "second class".,
Differences in classes are due to a certain number of properties in the sensors: response time, thermal offsets, temperature dependence, directional error, non-stability, non-linearity, spectral selectivity and tilt response. These are all defined in ISO 9060. For a sensor to be classified in a certain category, it needs to fulfill all the minimum requirements for these properties. Further additional classes are defined by adding the term "spectrally flat radiometer", this is allowed if the pyranometer has a spectral selectivity of less than 3% in the 0,35 to 1,5 μm spectral range
The calibration is typically done having the World Radiometric Reference as an absolute reference. It is maintained by PMOD in Davos, Switzerland. In addition to the World Radiometric Reference, there are private laboratories such as ISO-Cal North America who have acquired accreditation for these unique calibrations. For the Class A pyranometer, calibration is done following ASTM G167, ISO 9847 or ISO 9846. Class B and class C pyranometers are usually calibrated according to ASTM E824 and ISO 9847.

Photoelectric pyranometer - silicon photodiode

Photoelectric pyranometers are standardized and calibrated under IEC 60904-4 for primary reference samples and under IEC 60904-2 for secondary reference samples and the instruments intended for sale.
In both standards, their respective traceability chain starts with the primary standard known as the group of cavity radiometer by the World Radiometric Reference.

Signal conditioning

The natural output value of these pyranometers does not usually exceed tens of millivolt. It is considered a ‘weak’ signal, and as such, rather vulnerable to electromagnetic interferences, especially where the cable runs across decametrical distances or lies in photovoltaic systems. Thus, these sensors are frequently equipped with signal conditioning electronics, giving an output of 4-20 mA or 0-1 V.
Another solution implies greater immunities to noises, like Modbus over RS-485, suitable for ambiances with electromagnetic interferences typical of medium-large scale photovoltaic power stations, or SDI-12 output, where sensors are part of a low power weather station. The equipped electronics often concur to easy integration in the system's SCADA.
Additional information can also be stored in the electronics of the sensor, like calibration history, serial number.