Pulmonary alveolus


A pulmonary alveolus is a hollow cup-shaped cavity found in the lung parenchyma where gas exchange takes place. Lung alveoli are found in the acini at the beginning of the respiratory zone. They are located sparsely in the respiratory bronchioles, line the walls of the alveolar ducts, and are more numerous in the blind-ended alveolar sacs. The acini are the basic units of respiration, with gas exchange taking place in all the alveoli present. The alveolar membrane is the gas exchange surface, surrounded by a network of capillaries. Across the membrane oxygen is diffused into the capillaries and carbon dioxide released from the capillaries into the alveoli to be breathed out.
Alveoli are particular to mammalian lungs. Different structures are involved in gas exchange in other vertebrates.

Structure

The alveoli are located in the alveolar sacs of the lungs in the pulmonary lobules of the respiratory zone, representing the smallest functional units in the respiratory tract. They are also present in the respiratory bronchioles as scattered outpockets, extending from their lumens. The respiratory bronchioles lead into alveolar ducts which are deeply lined with alveoli. Each respiratory bronchiole gives rise to between two and eleven alveolar ducts. Each duct opens into five or six alveolar sacs into which clusters of alveoli open. New alveoli continue to form until the age of eight years.
A typical pair of human lungs contain about 300 million alveoli, producing of surface area. Each alveolus is wrapped in a fine mesh of capillaries covering about 70% of its area. The diameter of an alveolus is between 200 and 500 μm.

Microanatomy

The alveoli consist of an epithelial layer of simple squamous epithelium, and an extracellular matrix surrounded by capillaries. The epithelial lining is part of the alveolar membrane, also known as the respiratory membrane, that allows the exchange of gases. The membrane has several layers – a layer of lining fluid that contains surfactant, the epithelial layer and its basement membrane; a thin interstitial space between the epithelial lining and the capillary membrane; a capillary basement membrane that often fuses with the alveolar basement membrane, and the capillary endothelial membrane. The whole membrane however is only between 0.2 μm at its thinnest part and 0.6 μm at its thickest.
In the alveolar walls there are interconnecting air passages between the alveoli known as the pores of Kohn. The alveolar septa that separate the alveoli in the alveolar sac contain some collagen fibers and elastic fibers. The septa also house the enmeshed capillary network that surrounds each alveolus. The elastic fibres allow the alveoli to stretch when they fill with air during inhalation. They then spring back during exhalation in order to expel the carbon dioxide-rich air.
There are three major types of alveolar cell. Two types are pneumocytes or pneumonocytes known as type I and type II cells found in the alveolar wall, and a large phagocytic cell known as an alveolar macrophage that moves about in the lumens of the alveoli, and in the connective tissue between them. Type I cells, also called type I pneumocytes, or type I alveolar cells, are squamous, thin and flat and form the structure of the alveoli. Type II cells, also called type II pneumocytes or type II alveolar cells, release pulmonary surfactant to lower surface tension, and can also differentiate to replace damaged type I cells.

Development

Respiratory bronchioles, the earliest structures that will contain alveoli, have formed by 16 weeks of gestation; the cells that will become the alveoli begin to appear at the end of these bronchioles. Around week 20, fetal breathing movements may begin. Alveolar sacs are formed at 32 weeks of gestation, and these air sacs continue to form until 8 years of age and possibly into the teenage years.

Function

Type I cells

Type I cells are the larger of the two cell types; they are thin and flat epithelial lining cells, that form the structure of the alveoli. They are squamous and have long cytoplasmic extensions that cover more than 95% of the alveolar surface.
Type I cells are involved in the process of gas exchange between the alveoli and blood. These cells are extremely thin – sometimes only 25 nm – the electron microscope was needed to prove that all alveoli are lined with epithelium. This thin lining enables a fast diffusion of gas exchange between the air in the alveoli and the blood in the surrounding capillaries.
The nucleus of a type I cell occupies a large area of free cytoplasm and its organelles are clustered around it reducing the thickness of the cell. This also keeps the thickness of the blood-air barrier reduced to a minimum.
The cytoplasm in the thin portion contains pinocytotic vesicles which may play a role in the removal of small particulate contaminants from the outer surface. In addition to desmosomes, all type I alveolar cells have occluding junctions that prevent the leakage of tissue fluid into the alveolar air space.
The relatively low solubility of oxygen, necessitates the large internal surface area and very thin walls of the alveoli. Weaving between the capillaries and helping to support them is an extracellular matrix, a meshlike fabric of elastic and collagenous fibres. The collagen fibres, being more rigid, give the wall firmness, while the elastic fibres permit expansion and contraction of the walls during breathing.
Type I pneumocytes are unable to replicate and are susceptible to toxic insults. In the event of damage, type II cells can proliferate and differentiate into type I cells to compensate.

Type II cells

Type II cells are cuboidal and much smaller than type I cells. They are the most numerous cells in the alveoli, yet do not cover as much surface area as the squamous type I cells. Type II cells in the alveolar wall contain secretory organelles known as lamellar bodies that fuse with the cell membranes and secrete pulmonary surfactant. This surfactant is a film of fatty substances, a group of phospholipids that reduce alveolar surface tension. The phospholipids are stored in the lamellar bodies. Without this coating, the alveoli would collapse. The surfactant is continuously released by exocytosis. Reinflation of the alveoli following exhalation is made easier by the surfactant, which reduces surface tension in the thin fluid coating of the alveoli. The fluid coating is produced by the body in order to facilitate the transfer of gases between blood and alveolar air, and the type II cells are typically found at the blood-air barrier.
Type II cells start to develop at about 26 weeks of gestation, secreting small amounts of surfactant. However, adequate amounts of surfactant are not secreted until about 35 weeks of gestation – this is the main reason for increased rates of infant respiratory distress syndrome, which drastically reduces at ages above 35 weeks gestation.
Type II cells are also capable of cellular division, giving rise to more type I and II alveolar cells when the lung tissue is damaged.
MUC1, a human gene associated with type II pneumocytes, has been identified as a marker in lung cancer.

Alveolar macrophages

The alveolar macrophages reside on the internal lumenal surfaces of the alveoli, the alveolar ducts, and the bronchioles. They are mobile scavengers that serve to engulf foreign particles in the lungs, such as dust, bacteria, carbon particles, and blood cells from injuries. They are also called dust cells.

Clinical significance

Diseases

Surfactant

Insufficient surfactant in the alveoli is one of the causes that can contribute to atelectasis. Without pulmonary surfactant, atelectasis is a certainty. Insufficient surfactant in the lungs of preterm infants causes infant respiratory distress syndrome.
Impaired surfactant regulation can cause an accumulation of surfactant proteins to build up in the alveoli in a condition called pulmonary alveolar proteinosis. This results in impaired gas exchange.

Inflammation

is an inflammatory condition of the lung parenchyma, which can be caused by both viruses and bacteria. Cytokines and fluids are released into the alveolar cavity, interstitium, or both, in response to infection, causing the effective surface area of gas exchange to be reduced. In severe cases where cellular respiration cannot be maintained, supplemental oxygen may be required.
Almost any type of lung tumor or lung cancer can compress the alveoli and reduce gas exchange capacity. In some cases the tumor will fill the alveoli.
A pulmonary contusion is a bruise of the lung tissue caused by trauma. Damaged capillaries can cause blood and other fluids to accumulate in the tissue of the lung, impairing gas exchange.
Pulmonary edema is the buildup of fluid in the parenchyma and alveoli usually caused by left ventricular heart failure, or by damage to the lung or its vasculature.

Coronavirus

Because of the high expression of angiotensin-converting enzyme 2 in type II alveolar cells, the lungs are susceptible to infections by some coronaviruses including the viruses that cause severe acute respiratory syndrome and coronavirus disease 2019.