Prüfer domain


In mathematics, a Prüfer domain is a type of commutative ring that generalizes Dedekind domains in a non-Noetherian context. These rings possess the nice ideal and module theoretic properties of Dedekind domains, but usually only for finitely generated modules. Prüfer domains are named after the German mathematician Heinz Prüfer.

Examples

The ring of entire functions on the open complex plane C form a Prüfer domain. The ring of integer valued polynomials with rational number coefficients is a Prüfer domain, although the ring Z of integer polynomials is not,. While every number ring is a Dedekind domain, their union, the ring of algebraic integers, is a Prüfer domain. Just as a Dedekind domain is locally a discrete valuation ring, a Prüfer domain is locally a valuation ring, so that Prüfer domains act as non-noetherian analogues of Dedekind domains. Indeed, a domain that is the direct limit of subrings that are Prüfer domains is a Prüfer domain,.
Many Prüfer domains are also Bézout domains, that is, not only are finitely generated ideals projective, they are even free. For instance the ring of analytic functions on any noncompact Riemann surface is a Bézout domain,, and the ring of algebraic integers is Bézout.

Definitions

A Prüfer domain is a semihereditary integral domain. Equivalently, a Prüfer domain may be defined as a commutative ring without zero divisors in which every non-zero finitely generated ideal is invertible. Many different characterizations of Prüfer domains are known. Bourbaki lists fourteen of them, has around forty, and open with nine.
As a sample, the following conditions on an integral domain R are equivalent to R being a Prüfer domain, i.e. every finitely generated ideal of R is projective:
;Ideal arithmetic:
;Localizations:
;Flatness:
;Integral closure:
More generally a Prüfer ring is a commutative ring in which every non-zero finitely generated ideal consisting only of non-zero-divisors is invertible.
A commutative ring is said to be arithmetical if for every maximal ideal m in R, the localization Rm of R at m is a chain ring. With this definition, an arithmetical domain is a Prüfer domain.
Noncommutative right or left semihereditary domains could also be considered as generalizations of Prüfer domains.