Pierre Curie


Pierre Curie was a French physicist, a pioneer in crystallography, magnetism, piezoelectricity, and radioactivity. In 1903, he received the Nobel Prize in Physics with his wife, Marie Skłodowska-Curie, and Henri Becquerel, "in recognition of the extraordinary services they have rendered by their joint researches on the radiation phenomena discovered by Professor Henri Becquerel".

Early life

Born in Paris on 15 May 1859, Pierre Curie was the son of Eugene Curie, a doctor of French Huguenot Protestant origin from Alsace, and Sophie-Claire Depouilly Curie. He was educated by his father and in his early teens showed a strong aptitude for mathematics and geometry. When he was 16, he earned his math degree. By the age of 18, he earned a higher degree, but did not proceed immediately to a doctorate due to lack of money. Instead, he worked as a laboratory instructor. When Pierre Curie was preparing for his bachelor of science degree, he worked in the laboratory of Jean-Gustave Bourbouze in the Faculty of Science.
, 1895
In 1880, Pierre and his older brother Jacques demonstrated that an electric potential was generated when crystals were compressed, i.e. piezoelectricity. To aid this work they invented the piezoelectric quartz electrometer. The following year they demonstrated the reverse effect: that crystals could be made to deform when subject to an electric field. Almost all digital electronic circuits now rely on this in the form of crystal oscillators. In subsequent work on magnetism Pierre Curie defined the Curie scale. This work also involved delicate equipment - balances, electrometers, etc.
Pierre Curie was introduced to Maria Skłodowska by their friend, physicist Józef Wierusz-Kowalski. Curie took her into his laboratory as his student. His admiration for her grew when he realized that she would not inhibit his research. He began to regard Skłodowska as his muse. She refused his initial proposal, but finally agreed to marry him on 26 July 1895.
The Curies had a happy, affectionate marriage, and they were known for their devotion to each other.

Research

Before his famous doctoral studies on magnetism, he designed and perfected an extremely sensitive torsion balance for measuring magnetic coefficients. Variations on this equipment were commonly used by future workers in that area. Pierre Curie studied ferromagnetism, paramagnetism, and diamagnetism for his doctoral thesis, and discovered the effect of temperature on paramagnetism which is now known as Curie's law. The material constant in Curie's law is known as the Curie constant. He also discovered that ferromagnetic substances exhibited a critical temperature transition, above which the substances lost their ferromagnetic behavior. This is now known as the Curie temperature. The Curie temperature is used to study plate tectonics, treat hypothermia, measure caffeine, and to understand extraterrestrial magnetic fields.
Pierre Curie formulated what is now known as the Curie Dissymmetry Principle: a physical effect cannot have a dissymmetry absent from its efficient cause. For example, a random mixture of sand in zero gravity has no dissymmetry. Introduce a gravitational field, and there is a dissymmetry because of the direction of the field. Then the sand grains can 'self-sort' with the density increasing with depth. But this new arrangement, with the directional arrangement of sand grains, actually reflects the dissymmetry of the gravitational field that causes the separation.
in their laboratory
Curie worked with his wife in isolating polonium and radium. They were the first to use the term "radioactivity", and were pioneers in its study. Their work, including Marie Curie's celebrated doctoral work, made use of a sensitive piezoelectric electrometer constructed by Pierre and his brother Jacques Curie. Pierre Curie's 1898 publication with his wife Mme. Curie and also with M. G. Bémont for their discovery of radium and polonium was honored by a Citation for Chemical Breakthrough Award from the Division of History of Chemistry of the American Chemical Society presented to the ESPCI ParisTech in 2015.
Curie and one of his students, Albert Laborde, made the first discovery of nuclear energy, by identifying the continuous emission of heat from radium particles. Curie also investigated the radiation emissions of radioactive substances, and through the use of magnetic fields was able to show that some of the emissions were positively charged, some were negative and some were neutral. These correspond to alpha, beta and gamma radiation.
The curie is a unit of radioactivity originally named in honor of Curie by the Radiology Congress in 1910, after his death. Subsequently, there has been some controversy over whether the naming was in honor of Pierre, Marie, or both.

Spiritualism

In the late nineteenth century, Pierre Curie was investigating the mysteries of ordinary magnetism when he became aware of the spiritualist experiments of other European scientists, such as Charles Richet and Camille Flammarion. Pierre Curie initially thought the systematic investigation into the paranormal could help with some unanswered questions about magnetism. He wrote to his fiancée Marie: "I must admit that those spiritual phenomena intensely interest me. I think they are questions that deal with physics." Pierre Curie's notebooks from this period show he read many books on spiritualism. He did not attend séances such as those of Eusapia Palladino in Paris in 1905–06 as a mere spectator, and his goal certainly was not to communicate with spirits. He saw the séances as scientific experiments, tried to monitor different parameters, and took detailed notes of every observation. Despite studying spiritualism, Curie was an atheist.

Family

Pierre and Marie Curie's daughter, Irène, and their son-in-law, Frédéric Joliot-Curie, were also physicists involved in the study of radioactivity, and each received Nobel prizes for their work as well. The Curies' other daughter, Ève, wrote a noted biography of her mother. She was the only member of the Curie family to not become a physicist. Ève married Henry Richardson Labouisse, Jr., who received a Nobel Peace Prize on behalf of Unicef in 1965. Pierre and Marie Curie's granddaughter, Hélène Langevin-Joliot, is a professor of nuclear physics at the University of Paris, and their grandson, Pierre Joliot, who was named after Pierre Curie, is a noted biochemist.

Death

Pierre Curie died in a street accident in Paris on 19 April 1906. Crossing the busy Rue Dauphine in the rain at the Quai de Conti, he slipped and fell under a heavy horse-drawn cart. He died instantly when one of the wheels ran over his head, fracturing his skull. Statements made by his father and lab assistant imply that Curie's characteristic absent-minded preoccupation with his thoughts contributed to his death.
Both the Curies experienced radium burns, both accidentally and voluntarily, and were exposed to extensive doses of radiation while conducting their research. They experienced radiation sickness and Marie Curie died of aplastic anemia in 1934. Even now, all their papers from the 1890s, even her cookbooks, are too dangerous to touch. Their laboratory books are kept in special lead boxes and people who want to see them have to wear protective clothing. Had Pierre Curie not been killed as he was, it is likely that he would have eventually died of the effects of radiation, as did his wife, their daughter Irène, and her husband Frédéric Joliot.
In April 1995, Pierre and Marie Curie were moved from their original resting place, a family cemetery, and enshrined in the crypt of the Panthéon in Paris.

Awards