Photocatalysis


In chemistry, photocatalysis is the acceleration of a photoreaction in the presence of a catalyst. In catalysed photolysis, light is absorbed by an adsorbed substrate. In photogenerated catalysis, the photocatalytic activity depends on the ability of the catalyst to create electron–hole pairs, which generate free radicals able to undergo secondary reactions. Its practical application was made possible by the discovery of water electrolysis by means of titanium dioxide.

History

Early mentions of photocatalysis (1911-1938)

The earliest mention of photocatalysis dates back to 1911, when German chemist Dr. Alexander Eibner integrated the concept in his research of the illumination of zinc oxide on the bleaching of the dark blue pigment, Prussian blue. Around this time, Bruner and Kozak published an article discussing the deterioration of oxalic acid in the presence of uranyl salts under illumination, while in 1913, Landau published an article explaining the phenomenon of photocatalysis. Their contributions led to the development of actinometric measurements, measurements that provide the basis of determining photon flux in photochemical reactions. After a brief stint of lack of research on photocatalysis, in 1921, Baly et al. used ferric hydroxides and colloidal uranium salts as catalysts for the creation of formaldehyde under light in the visible spectrum. However, it wasn't until 1938, when Doodeve and Kitchener discovered that TiO2, a highly-stable and non-toxic oxide, in the presence of oxygen, could act as a photosensitizer for bleaching dyes, as ultraviolet light absorbed by TiO2 led to the production of active oxygen species on its surface, resulting in the blotching of organic chemicals via photooxidation. This would actually mark the first observation of the fundamental characteristics of heterogeneous photocatalysis.

Advancements in photocatalysis research (1964–1981, present)

Research in photocatalysis subsided for over 25 years due to lack of interest and absence of practical applications. However, in 1964, V.N. Filimonov investigated isopropanol photooxidation from ZnO and TiO2; at around the same time, Kato and Mashio, Doerffler and Hauffe, and Ikekawa et al. explored oxidation/photooxidation of carbon dioxide and organic solvents from ZnO radiance. A few years later, in 1970, Formenti et al. and Tanaka and Blyholde observed the oxidation of various alkenes and the photocatalytic decay of nitrous oxide, respectively.
However, a breakthrough in photocatalysis research occurred in 1972, when Akira Fujishima and Kenichi Honda discovered electrochemical photolysis of water occurring between connected TiO2 and platinum electrodes, in which ultraviolet light was absorbed by the former electrode, and electrons would flow from the TiO2 electrode to the platinum electrode ; with hydrogen production occurring at the cathode. This was one of the first instances in which hydrogen production could come from a clean and cost-effective source, as the majority of hydrogen production back then came – and still today comes – from natural gas reforming and gasification. Fujishima's and Honda's findings have led to other advancements in photocatalysis; in 1977, Nozik discovered that the incorporation of a noble metal in the electrochemical photolysis process, such as platinum and gold, among others, could increase photoactivity, and that an external potential wasn't required. Future research conducted by Wagner and Somorjai and Sakata and Kawai delineated the production of hydrogen on the surface of strontium titanate via photogeneration, and the generation of hydrogen and methane from the illumination of TiO2 and PtO2 in ethanol, respectively.
Research and development in photocatalysis, especially in electrochemical photolysis of water, continues today, but so far, nothing has been developed for commercial purposes. In 2017, Chu et al. assessed the future of electrochemical photolysis of water, discussing its major challenge of developing a cost-effective, energy-efficient photoelectrochemical tandem cell, which would, “mimic natural photosynthesis.”

Types of photocatalysis

Homogeneous photocatalysis

In homogeneous photocatalysis, the reactants and the photocatalysts exist in the same phase. The most commonly used homogeneous photocatalysts include ozone and photo-Fenton systems. The reactive species is the •OH which is used for different purposes. The mechanism of hydroxyl radical production by ozone can follow two paths.
Similarly, the Fenton system produces hydroxyl radicals by the following mechanism
In photo-Fenton type processes, additional sources of OH radicals should be considered: through photolysis of H2O2, and through reduction of Fe3+ ions under UV light:
The efficiency of Fenton type processes is influenced by several operating parameters like concentration of hydrogen peroxide, pH and intensity of UV. The main advantage of this process is the ability of using sunlight with light sensitivity up to 450 nm, thus avoiding the high costs of UV lamps and electrical energy. These reactions have been proven more efficient than the other photocatalysis but the disadvantages of the process are the low pH values which are required, since iron precipitates at higher pH values and the fact that iron has to be removed after treatment.

Heterogeneous photocatalysis

Heterogeneous catalysis has the catalyst in a different phase from the reactants. Heterogeneous photocatalysis is a discipline which includes a large variety of reactions: mild or total oxidations, dehydrogenation, hydrogen transfer, 18O216O2 and deuterium-alkane isotopic exchange, metal deposition, water detoxification, gaseous pollutant removal, etc.
Most common heterogeneous photocatalysts are transition metal oxides and semiconductors, which have unique characteristics. Unlike the metals which have a continuum of electronic states, semiconductors possess a void energy region where no energy levels are available to promote recombination of an electron and hole produced by photoactivation in the solid. The void region, which extends from the top of the filled valence band to the bottom of the vacant conduction band, is called the band gap. When a photon with energy equal to or greater than the materials band gap is absorbed by the semiconductor, an electron is excited from the valence band to the conduction band, generating a positive hole in the valence band. Such a photogenerated electron-hole pair is termed an exciton. The excited electron and hole can recombine and release the energy gained from the excitation of the electron as heat. Exciton recombination is undesirable and higher levels lead to an inefficient photocatalyst. For this reason efforts to develop functional photocatalysts often emphasize extending exciton lifetime, improving electron-hole separation using diverse approaches that often rely on structural features such as phase hetero-junctions, noble-metal nanoparticles, silicon nanowires and substitutional cation doping. The ultimate goal of photocatalyst design is to facilitate reactions between the excited electrons with oxidants to produce reduced products, and/or reactions between the generated holes with reductants to produce oxidized products. Due to the generation of positive holes and electrons, oxidation-reduction reactions take place at the surface of semiconductors.
In one mechanism of the oxidative reaction, the positive holes react with the moisture present on the surface and produce a hydroxyl radical. The reaction starts by photo-induced exciton generation in the metal oxide surface :
Oxidative reactions due to photocatalytic effect:

Reductive reactions due to photocatalytic effect:
Ultimately, the hydroxyl radicals are generated in both the reactions. These hydroxyl radicals are very oxidative in nature and non selective with redox potential of

Applications

ISO 22197 -1:2007 specifies a test method for the determination of the nitric oxide removal performance of materials that contain a photocatalyst or have photocatalytic films on the surface.
Specific FTIR systems are used to characterise photocatalytic activity and/or passivity especially with respect to Volatile Organic Compounds VOCs and representative matrices of the binders applied.
Recent studies show that mass spectrometry can be a powerful tool to determine photocatalytic activity of certain materials by following the decomposition of gaseous pollutants such as nitrogen oxides or carbon dioxide