Phosphoryl chloride


Phosphoryl chloride is a colourless liquid with the formula 3. It hydrolyses in moist air releasing phosphoric acid and fumes of hydrogen chloride. It is manufactured industrially on a large scale from phosphorus trichloride and oxygen or phosphorus pentoxide. It is mainly used to make phosphate esters such as tricresyl phosphate.

Structure

Like phosphate, phosphoryl chloride is tetrahedral in shape. It features three P−Cl bonds and one strong P=O double bond, with an estimated bond dissociation energy of 533.5 kJ/mol. On the basis of bond length and electronegativity, the Schomaker-Stevenson rule suggests that the double bond form is dominant, in contrast with the case of POF3. The P=O bond involves the donation of the lone pair electrons on oxygen p-orbitals to the antibonding combinations associated with phosphorus-chlorine bonds, thus constituting π bonding.

Physical properties

With a freezing point of 1 °C and boiling point of 106 °C, the liquid range of POCl3 is rather similar to water. Also like water, POCl3 autoionizes, owing to the reversible formation of POCl2+,Cl.

Chemical properties

POCl3 reacts with water to give hydrogen chloride and phosphoric acid:
Intermediates in the conversion have been isolated, including pyrophosphoryl chloride, P2O3Cl4.
Upon treatment with excess alcohols and phenols, POCl3 gives phosphate esters:
Such reactions are often performed in the presence of an HCl acceptor such as pyridine or an amine.
POCl3 can also act as a Lewis base, forming adducts with a variety of Lewis acids such as titanium tetrachloride:
The aluminium chloride adduct is quite stable, and so POCl3 can be used to remove AlCl3 from reaction mixtures, for example at the end of a Friedel-Crafts reaction.
POCl3 reacts with hydrogen bromide in the presence of Lewis-acidic catalysts to produce POBr3.

Preparation

Phosphoryl chloride can be prepared by many methods. Phosphoryl chloride was first reported in 1847 by the French chemist Adolphe Wurtz by reacting phosphorus pentachloride with water.

By oxidation

The commercial method involves oxidation of phosphorus trichloride with oxygen:
An alternative method involves the oxidation of phosphorus trichloride with potassium chlorate:

Oxygenations

The reaction of phosphorus pentachloride with phosphorus pentoxide.
The reaction can be simplified by chlorinating a mixture of PCl3 and P4O10, generating the PCl5 :Wiktionary:in situ|in situ.
The reaction of phosphorus pentachloride with boric acid or oxalic acid:

Other methods

Reduction of tricalcium phosphate with carbon in the presence of chlorine gas:
The reaction of phosphorus pentoxide with sodium chloride is also reported:

Uses

In one commercial application, phosphoryl chloride is used in the manufacture of phosphate esters. Triarylphosphates such as triphenyl phosphate and tricresyl phosphate are used as flame retardants and plasticisers for PVC. Trialkylphosphates such as tributyl phosphate are used as liquid–liquid extraction solvents in nuclear reprocessing and elsewhere.
In the semiconductor industry, POCl3 is used as a safe liquid phosphorus source in diffusion processes. The phosphorus acts as a dopant used to create n-type layers on a silicon wafer.

As a reagent

In the laboratory, POCl3 is a reagent in dehydrations. One example involves conversion of primary amides to nitriles:
In a related reaction, certain aryl-substituted amides can be cyclised using the Bischler-Napieralski reaction.
Such reactions are believed to proceed via an imidoyl chloride. In certain cases, the imidoyl chloride is the final product. For example, pyridones and pyrimidones can be converted to chloro- derivatives such as 2-chloropyridines and 2-chloropyrimidines, which are intermediates in the pharmaceutical industry.
In the Vilsmeier-Haack reaction, POCl3 reacts with amides to produce a "Vilsmeier reagent", a chloro-iminium salt, which subsequently reacts with electron-rich aromatic compounds to produce aromatic aldehydes upon aqueous work-up.