Periodontal scaler


Periodontal scalers are dental instruments used in the prophylactic and periodontal care of teeth, including scaling and root planing. The working ends come in a variety of shapes and sizes, but they are always narrow at the tip, so as to allow for access to narrow embrasure spaces between teeth. They differ from periodontal curettes, which possess a blunt tip.

Use

Together with periodontal curettes, periodontal scalers are used to remove calculus from teeth. While curettes are often universal in that they can be used on both supra- and sub-gingival calculus removals, scalers are restricted to supra-gingival use. Use of a scaler below the gum line is likely to damage the gingiva.
Scalers have scraping edges on both sides of their blades and thus are fit for both mesial and distal surfaces of any tooth in the area in which they are being used.
Scalers are best used when their terminal shank, namely, the last portion of the functional shank closest to the working end, is angled slightly toward the surface of the tooth.

Design and materials

The composition of hand instruments is continuously evolving, which is why it may be a challenge to find the proper instrument for the right clinical situation. With the broad variation of instrument designs and materials, it allows dental professionals to implement periodontal therapy with reduced strain and increased comfort levels for both the clinician and the patient. The following are some factors to consider with the design of periodontal scalers:
With the continuous, evolving technology of hand instruments, dental professionals are given the opportunity to implement dental treatment more effectively for the patient while improving their work surroundings simultaneously.

Design characteristics

Generally, there are two cutting edges per working end: the outer cutting edge and the inner cutting edge. This way, both edges can adapt to both the interproximal surfaces of any tooth, to which they are being used. Typically, periodontal scalers have pointed backs, but some new scaler designs have working ends with rounded backs as well. Additionally, they have triangular cross sections; this limits their instrumentation use to above the gingiva to prevent any tissue trauma. Periodontal scalers also have pointed tips and faces perpendicular to the lower shank; this is why the terminal shank must be tilted towards the tooth in order to establish correct angulation since the cutting edges are at equal levels with each other.
There are two types of periodontal scaler designs:
When it comes to periodontal therapy, there are multiple steps that are required prior to activating a proper working stroke on the teeth. First, a modified pen grasp position must be achieved before starting periodontal instrumentation; this position involves the thumb and the index finger placed on the instrument handle, the middle finger resting on the shank, and the little finger neutral and relaxed near the ring finger. By holding periodontal instruments in this manner, it allows for precise control of the instrument, effective detection of rough areas on the tooth structure, and reduces musculoskeletal stress on the clinician.
In addition, there are several characteristics of a calculus removal stroke that are vital to the effectiveness of periodontal instrumentation; these include stabilization, adaptation, angulation, lateral pressure, characteristics, stroke direction, and stroke number.
Once all these characteristics are understood, the clinician will activate the periodontal debridement strokes using the periodontal scalers.
When performing periodontal debridement, the instrumentation of anterior teeth and posterior teeth are applied with the following steps. First, the fulcrum finger rests on a tooth to support the clinician’s hand, then at the initiation of a stroke, the clinician will press down on the fulcrum finger to further gain control. It is crucial to tilt the lower shank of the periodontal scaler slightly towards the tooth surface being worked on to obtain correct angulation. This ensures that a 70º-80º angulation is achieved between the tooth surface and the face of the instrument. The instrument is then walked across the surface being worked on with short, controlled, overlapping strokes while applying moderate pressure. Overall, the working-end of the instrument is only moving a few millimeters at a time. Simultaneously, the clinician must roll the handle of the instrument to maintain adaptation throughout, to prevent any soft tissue injury. After completing a calculus removal stroke, the clinician may then utilize an assessment stoke, characterized by feather-light pressure, to judge the removal of the calculus deposit. These steps are repeated until the complete removal of calculus is achieved throughout the entire dentition.
These instrumentation techniques are followed to achieve effective periodontal therapy using periodontal instruments, such as periodontal scalers. Moreover, following these instrumentation principles would improve the quality of life for the clinician as well; this includes lowering the risk of musculoskeletal disorders in their hands and/or forearm, conserving more effort than required, and increasing the efficiency of instrumentation. These principles form a foundation to improve efficiency and effectiveness of periodontal therapy while protecting the proper ergonomics of the clinician.
A healthy periodontium is achieved by completely removing the living bacteria present in the both the biofilm and calculus. This bacteria is responsible for periodontal disease, a term that encompasses both gingivitis and periodontitis. It is also important to note that with different levels of periodontal disease, the clinician may apply sextant scaling or quadrant scaling to achieve best results for a healthy periodontium. In this case, a sextant or a quadrant will be completed per appointment, which would require multiple appointments to complete debridement of the entire mouth.