Periodic points of complex quadratic mappings
This article describes periodic points of some complex quadratic maps. A map is a formula for computing a value of a variable based on its own previous value or values; a quadratic map is one that involves the previous value raised to the powers one and two; and a complex map is one in which the variable and the parameters are complex numbers. A periodic point of a map is a value of the variable that occurs repeatedly after intervals of a fixed length.
These periodic points play a role in the theories of Fatou and Julia sets.
Definitions
Letbe the complex quadric mapping, where and are complex-valued.
Notationally, is the -fold composition of with itself—that is, the value after the k-th iteration of function Thus
Periodic points of a complex quadratic mapping of period are points of the dynamical plane such that
where is the smallest positive integer for which the equation holds at that z.
We can introduce a new function:
so periodic points are zeros of function : points z satisfying
which is a polynomial of degree
Number of periodic points
of polynomial describing periodic points is so it has exactly complex roots, counted with multiplicity,Stability of periodic points (orbit) - multiplier
The multiplier of a rational map iterated times at cyclic point is defined as:where is the first derivative of with respect to at.
Because the multiplier is the same at all periodic points on a given orbit, it is called a multiplier of the periodic orbit.
The multiplier is:
- a complex number;
- invariant under conjugation of any rational map at its fixed point;
- used to check stability of periodic points with stability index
- attracting when
- * super-attracting when
- * attracting but not super-attracting when
- indifferent when
- * rationally indifferent or parabolic if is a root of unity;
- * irrationally indifferent if but multiplier is not a root of unity;
- repelling when
- that are attracting are always in the Fatou set;
- that are repelling are in the Julia set;
- that are indifferent fixed points may be in one or the other. A parabolic periodic point is in the Julia set.
Period-1 points (fixed points)
Finite fixed points
Let us begin by finding all points left unchanged by one application of. These are the points that satisfy. That is, we wish to solvewhich can be rewritten as
Since this is an ordinary quadratic equation in one unknown, we can apply the standard quadratic solution formula:
So for we have two fixed points and.
Since
then.
Thus fixed points are symmetrical around.
Complex dynamics
Here different notation is commonly used:and
Using Viète's formulas one can show that:
Since the derivative with respect to z is
then
This implies that can have at most one attractive fixed point.
These points are distinguished by the facts that:
- is:
- *the landing point of the external ray for angle=0 for
- *the most repelling fixed point of the Julia set
- * the one on the right, it is the extreme right point for connected Julia sets.
- is:
- * the landing point of several rays
- *attracting when is in the main cardioid of the Mandelbrot set, in which case it is in the interior of a filled-in Julia set, and therefore belongs to the Fatou set
- *parabolic at the root point of the limb of the Mandelbrot set
- *repelling for other values of
Special cases
Only one fixed point
We have exactly when This equation has one solution, in which case. In fact is the largest positive, purely real value for which a finite attractor exists.Infinite fixed point
We can extend the complex plane to the Riemann sphere by adding infinity :and extending polynomial such that
Then infinity is :
- superattracting
- a fixed point of polynomial
Period-2 cycles
We write
Equating this to z, we obtain
This equation is a polynomial of degree 4, and so has four solutions. However, we already know two of the solutions. They are and, computed above, since if these points are left unchanged by one application of, then clearly they will be unchanged by more than one application of.
Our 4th-order polynomial can therefore be factored in 2 ways:
First method of factorization
This expands directly as , whereWe already have two solutions, and only need the other two. Hence the problem is equivalent to solving a quadratic polynomial. In particular, note that
and
Adding these to the above, we get and. Matching these against the coefficients from expanding, we get
From this, we easily get
From here, we construct a quadratic equation with and apply the standard solution formula to get
Closer examination shows that :
meaning these two points are the two points on a single period-2 cycle.
Second method of factorization
We can factor the quartic by using polynomial long division to divide out the factors and which account for the two fixed points and :The roots of the first factor are the two fixed points. They are repelling outside the main cardioid.
The second factor has the two roots
These two roots, which are the same as those found by the first method, form the period-2 orbit.
Special cases
Again, let us look at. Thenboth of which are complex numbers. We have. Thus, both these points are "hiding" in the Julia set.
Another special case is, which gives and. This gives the well-known superattractive cycle found in the largest period-2 lobe of the quadratic Mandelbrot set.
Cycles for period greater than 2
The degree of the equation is 2n; thus for example, to find the points on a 3-cycle we would need to solve an equation of degree 8. After factoring out the factors giving the two fixed points, we would have a sixth degree equation.There is no general solution in radicals to polynomial equations of degree five or higher, so the points on a cycle of period greater than 2 must in general be computed using numerical methods. However, in the specific case of period 4 the cyclical points have lengthy expressions in radicals.
In the case c = –2, trigonometric solutions exist for the periodic points of all periods. The case is equivalent to the logistic map case r = 4: Here the equivalence is given by One of the k-cycles of the logistic variable x is