Panmixia means random mating. A panmictic population is one where all individuals are potential partners. This assumes that there are no mating restrictions, neither genetic nor behavioural, upon the population and that therefore all recombination is possible. The Wahlund effect assumes that the overall population is panmictic. In genetics, random mating involves the mating of individuals regardless of any physical, genetic or social preference. In other words, the mating between two organisms is not influenced by any environmental, hereditary or social interaction. Hence, potential mates have an equal chance of being selected. Random mating is a factor assumed in the Hardy–Weinberg principle and is distinct from lack of natural selection: in viability selection for instance, selection occurs before mating.
Description
In simple terms, panmixia is the ability of individuals in a population to interbreed without restrictions; individuals are able to move about freely within their habitat, possibly over a range of hundreds to thousands of miles, and thus breed with other members of the population. To signify the importance of this, imagine several different finite populations of the same species, isolated from each other by some physical characteristic of the environment. As time progresses, natural selection and genetic drift will slowly move each population toward genetic differentiation that would make each population genetically unique. However, if the separating factor is removed before this happens, and the individuals are allowed to move about freely, the individual populations will still be able to interbreed. As the species's populations interbreed over time, they become more genetically uniform, functioning again as a single panmictic population. In attempting to describe the mathematical properties of structured populations, Sewall Wright proposed a "factor of Panmixia" to include in the equations describing the gene frequencies in a population, and accounting for a population's tendency towards panmixia, while a "factor of Fixation" would account for a population's departure from the Hardy–Weinberg expectation, due to less than panmictic mating. In this formulation, the two quantities are complementary, i.e. P = 1 − F. From this factor of fixation, he later developed the F statistics.
Background information
In a panmictic species, all of the individuals of a single species are potential partners, and the species gives no mating restrictions throughout the population. Panmixia can also be referred to as random mating, referring to a population that randomly chooses their mate, rather than sorting between the adults of the population. Panmixia allows for species to reach genetic diversity through gene flow more efficiently than monandry species. However, outside population factors, like drought and limited food sources, can affect the way any species will mate. When scientist examine species mating to understand their mating style, they look at factors like genetic markers, genetic differentiation, and gene pool.
Panmictic species
A panmictic population of Monostroma latissimum, a marine green algae, shows sympatric speciation in southwest Japanese islands. Although panmictic, the population is diversifying. Dawson's Burrowing bee, Amegilla dawsoni, may be forced to aggregate in common mating areas due to uneven resource distribution in its harsh desert environment. Pantala flavescens should be considered as a global panmictic population.
Related experiments and species
Anguilla rostrate, or the American eel, exhibits panmixia throughout the entire species. This allows the eel to have phenotypic variation in their offspring and survive in a wide range of environmental conditions
In 2016, BMC Evolutionary Biology conducted a study on Pachygrapsus marmoratus, the marbled crab, marking them as panmictic species. The study claimed that the crabs' mating behavior is characterized by genetic differentiation due to geographic breaks across its distribution range and not panmixia
In a heterogeneous environment such as the forests of Oregon, United States, Douglas squirrels exhibit local patterns of adaptation. In a study conducted by Chaves a population along an entire transect was found to be panmictic. Traits observed in this study included skull shape, fur color, etc.
Swordfish based in the Indian Ocean have been found to be a single panmictic population. Markers used in the study carried out by Muths et al found large spatial and temporal homogeneity in genetic structure satisfactory in order to consider the swordfish a singular panmictic population.