Painlevé transcendents
In mathematics, Painlevé transcendents are solutions to certain nonlinear second-order ordinary differential equations in the complex plane with the Painlevé property, but which are not generally solvable in terms of elementary functions. They were discovered by
, and
History
Painlevé transcendents have their origin in the study of special functions, which often arise as solutions of differential equations, as well as in the study of isomonodromic deformations of linear differential equations. One of the most useful classes of special functions are the elliptic functions. They are defined by second order ordinary differential equations whose singularities have the Painlevé property: the only movable singularities are poles. This property is rare in nonlinear equations. Poincaré and L. Fuchs showed that any first order equation with the Painlevé property can be transformed into the Weierstrass elliptic function or the Riccati equation, which can all be solved explicitly in terms of integration and previously known special functions. Émile Picard pointed out that for orders greater than 1, movable essential singularities can occur, and found a special case of what was later called Painleve VI equation.Around 1900, Paul Painlevé studied second order differential equations with no movable singularities. He found that up to certain transformations, every such equation
of the form
can be put into one of fifty canonical forms.
found that forty-four of the fifty equations are reducible in the sense that they can be solved in terms of previously known functions, leaving just six equations requiring the introduction of new special functions to solve them. There were some computational errors,
and as a result he missed three of the equations, including the general form of Painleve VI.
The errors were fixed and classification completed by Painlevé's student :de: Bertrand Gambier|Bertrand Gambier. Independently of Painlevé and Gambier, equation Painleve VI was found
by :de: Richard Fuchs|Richard Fuchs from completely different considerations:
he studied isomonodromic deformations of linear differential equations with regular singularities.
It was a controversial open problem for many years to show that these six equations really were irreducible for generic values of the parameters, but this was finally proved by and .
These six second order nonlinear differential equations are called the Painlevé equations and their solutions are called the Painlevé transcendents.
The most general form of the sixth equation was missed by Painlevé, but was discovered in 1905 by Richard Fuchs, as the differential equation satisfied by the singularity of a second order Fuchsian equation with 4 regular singular points on P1 under monodromy-preserving deformations. It was added to Painlevé's list by.
tried to extend Painlevé's work to higher order equations, finding some third order equations with the Painlevé property.
List of Painlevé equations
These six equations, traditionally called Painlevé I-VI, are as follows:The numbers α, β, γ, δ are complex constants. By rescaling y and t one can choose two of the parameters for type III, and one of the parameters for type V, so these types really have only 2 and 3 independent parameters.
Singularities
The singularities of solutions of these equations are- The point ∞, and
- The point 0 for types III, V and VI, and
- The point 1 for type VI, and
- Possibly some movable poles
converging in some neighborhood of z0. The location of the poles was described in detail by. The number of poles in a ball of radius R grows roughly like a constant times R5/2.
For type II, the singularities are all simple poles.
Degenerations
The first five Painlevé equations are degenerations of the sixth equation.More precisely, some of the equations are degenerations of others according to the following diagram, which also
gives the corresponding degenerations of the Gauss hypergeometric function
Hamiltonian systems
The Painlevé equations can all be represented as Hamiltonian systems.Example: If we put
then the second Painlevé equation
is equivalent to the Hamiltonian system
for the Hamiltonian
Symmetries
A Bäcklund transformation is a transformation of the dependent and independent variables of a differential equation that transforms it to a similar equation. The Painlevé equations all have discrete groups ofBäcklund transformations acting on them, which can be used to generate new solutions from known ones.
Example type I
The set of solutions of the type I Painlevé equationis acted on by the order 5 symmetry y→ζ3y, t→ζt
where ζ is a fifth root of 1. There are two solutions invariant under this transformation, one with a pole of order 2 at 0, and the other with a zero of order 3 at 0.
Example type II
In the Hamiltonian formalism of the type II Painlevé equationwith
two Bäcklund transformations are given by
and
These both have order 2, and generate an infinite dihedral group of Bäcklund transformations.
If b=1/2 then the equation has the solution y=0; applying the Bäcklund transformations generates an infinite family of rational functions that are solutions, such as y=1/t, y=2/t,...
Okamoto discovered that the parameter space of each Painlevé equation can be identified with the Cartan subalgebra of a semisimple Lie algebra, such that actions of the affine Weyl group lift to Bäcklund transformations of the equations. The Lie algebras for PI, PII, PIII, PIV, PV, PVI are 0, A1, A1⊕A1, A2, A3, and D4,
Relation to other areas
One of the main reasons for which Painlevé equations are studied is their relations with monodromyof linear systems with regular singularities; in particular, Painlevé VI was discovered
by Richard Fuchs because of this relation. This subject is described
in the article on isomonodromic deformation.
The Painlevé equations are all reductions of integrable partial differential equations; see.
The Painlevé equations are all reductions of the self dual Yang-Mills equations; see.
The Painlevé transcendents appear in random matrix theory in the formula for the Tracy–Widom distribution, the 2D Ising model, the asymmetric simple exclusion process and in two-dimensional quantum gravity.
The Painlevé VI equation appears in two-dimensional conformal field theory: it is obeyed by combinations of conformal blocks at both and, where is the central charge of the Virasoro algebra.