Organotin chemistry


Organotin compounds or stannanes are chemical compounds based on tin with hydrocarbon substituents. Organotin chemistry is part of the wider field of organometallic chemistry. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn-C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

Structure of organotin compounds

Organotin compounds are generally classified according to their oxidation states. Tin compounds are much more common and more useful.

Organic derivatives of tin(IV)

The tetraorgano derivatives are invariably tetrahedral. Compounds of the type SnRR'RR' have been resolved into individual enantiomers.

Organotin halides

Organotin chlorides have the formula R4−nSnCln for values of n up to 3. Bromides, iodides, and fluorides are also known but less important. These compounds are known for many R groups. They are always tetrahedral. The tri- and dihalides form adducts with good Lewis bases such as pyridine. The fluorides tend to associate such that dimethyltin difluoride forms sheet-like polymers. Di- and especially triorganotin halides, e.g. tributyltin chloride, exhibit toxicities approaching that of hydrogen cyanide.

Organotin hydrides

Organotin hydrides have the formula R4−nSnHn for values of n up to 4. The parent member of this series, stannane, is an unstable colourless gas. Stability is correlated with the number of organic substituents. Tributyltin hydride is used as a source of hydride radical in some organic reactions.

Organotin oxides and hydroxides

Organotin oxides and hydroxides are common products from the hydrolysis of organotin halides. Unlike the corresponding derivatives of silicon and germanium, tin oxides and hydroxides often adopt structures with penta- and even hexacoordinated tin centres, especially for the diorgano- and monoorgano derivatives. The group Sn-O-Sn is called a stannoxane. Structurally simplest of the oxides and hydroxides are the triorganotin derivatives. A commercially important triorganotin hydroxides is the acaricide Cyhexatin, 3SnOH. Such triorganotin hydroxides exist in equilibrium with the distannoxanes:
With only two organic substituents on each Sn centre, the diorganotin oxides and hydroxides are structurally more complex than the triorgano derivatives. The simple geminal diols and monomeric stannanones are unknown. Diorganotin oxides are polymers except when the organic substituents are very bulky, in which case cyclic trimers or, in the case of R = CH2 dimers, with Sn3O3 and Sn2O2 rings. The distannoxanes exist as dimers of dimers with the formula 2O2 wherein the X groups can be terminal or bridging. The hydrolysis of the monoorganotin trihalides has the potential to generate stannanoic acids, RSnO2H. As for the diorganotin oxides/hydroxides, the monoorganotin species form structurally complex because of the occurrence of dehydration/hydration, aggregation. Illustrative is the hydrolysis of butyltin trichloride to give 2+.

Hypercoordinated stannanes

Unlike carbon analogues but somewhat like silicon compounds, tin can also be coordinated to five and even six atoms instead of the regular four. These hypercoordinated compounds usually have electronegative substituents. Numerous examples of hypervalency are provided by the organotin oxides and associated carboxylates and related pseudohalide derivatives. The organotin halides for adducts, e.g. Me2SnCl2.
The all-organic penta- and hexaorganostannates have even been characterized, while in the subsequent year a six-coordinated tetraorganotin compound was reported. A crystal structure of room-temperature stable all-carbon pentaorganostannane was reported as the lithium salt with this structure:
In this distorted trigonal bipyramidal structure the carbon to tin bond lengths are larger than regular C-Sn bonds reflecting its hypervalent nature.

Triorganotin cations

Some reactions of triorganotin halides implicate a role for R3Sn+ intermediates. Such cations are analogous to carbocations. They have been characterized crystallographically when the organic substituents are large, such as 2,4,6-triisopropylphenyl.

Tin radicals (organic derivatives of tin(III))

Tin radicals, with the formula R3Sn, are called stannyl radicals. They are invoked as intermediates in certain atom-transfer reactions. For example, tributyltin hydride serves as a useful source of "hydrogen atoms" because of the stability of the tributytin radical.

Organic derivatives of tin(II)

Organotin compounds are somewhat rare. Compounds with the empirical formula SnR2 are somewhat fragile and exist as rings or polymers when R is not bulky. The polymers, called polystannanes, have the formula n.
In principle divalent tin compounds might be expected to form analogues of alkenes with a formal double bond. Indeed, compounds with the formula Sn2R4, called distannenes, are known for certain organic substituents. The Sn centres tend to be highly pyramidal. Monomeric compounds with the formula SnR2, analogues of carbenes are also known in a few cases. One example is Sn2, where R is the very bulky CH2. Such species reversibly dimerize to the distannylene upon crystallization:
Stannenes, compounds with tin–carbon double bonds, are exemplified by derivatives of stannabenzene. Stannoles, structural analogs of cyclopentadiene, exhibit little C-Sn double bond character.

Organic derivatives of tin(I)

Compounds of Sn are rare and only observed with very bulky ligands. One prominent family of cages is accessed by pyrolysis of the 2,6-diethylphenyl-substituted tristannylene 3, which affords the cubane-type cluster and a prismane. These cages contain Sn and have the formula n where n = 8, 10. A stannyne contains a carbon to tin triple bond and a distannyne a triple bond between two tin atoms. Distannynes only exist for extremely bulky substituents. Unlike alkynes, the C-Sn-Sn-C core of these distannynes are nonlinear, although they are planar. The Sn-Sn distance is 3.066 Å, and the Sn-Sn-C angles are 99.25°. Such compounds are prepared by reduction of bulky aryltin halides.

Preparation of organotin compounds

Organotin compounds can be synthesised by numerous methods. Classic is the reaction of a Grignard reagent with tin halides for example tin tetrachloride. An example is provided by the synthesis of tetraethyltin:
The symmetrical tetraorganotin compounds, especially tetraalkyl derivatives, can then be converted to various mixed chlorides by redistribution reactions :
A related method involves redistribution of tin halides with organoaluminium compounds.
The mixed organo-halo tin compounds can be converted to the mixed organic derivatives, as illustrated by the synthesis of dibutyldivinyltin:
The organotin hydrides are generated by reduction of the mixed alkyl chlorides. For example, treatment of dibutyltin dichloride with lithium aluminium hydride gives the dibutyltin dihydride, a colourless distillable oil:
The Wurtz-like coupling of alkyl sodium compounds with tin halides yields tetraorganotin compounds.
Hydrostannylation involves the metal-catalyzed addition of tin hydrides across unsaturated substrates.

Reactions of organotin compounds

Important reactions, discussed above, usually focus on organotin halides and pseudohalides with nucleophiles. In the area of organic synthesis, the Stille reaction is considered important. It entails coupling reaction with sp2-hybridized organic halides catalyzed by palladium:
and organostannane additions. Organotin compounds are also used extensively in radical chemistry.

Applications

An organotin compound is commercially applied as stabilizers in polyvinyl chloride. In this capacity, they suppress degradation by removing allylic chloride groups and by absorbing hydrogen chloride. This application consumes about 20,000 tons of tin each year. The main class of organotin compounds are diorganotin dithiolates with the formula R2Sn2. The Sn-S bond is the reactive component. Diorganotin carboxylates, e.g., dibutyltin dilaurate, are used as catalysts for the formation of polyurethanes, for vulcanization of silicones, and transesterification.
n-Butyltin trichloride is used in the production of tin dioxide layers on glass bottles by chemical vapor deposition.

Biological applications

"Tributyltins" are used as industrial biocides, e.g. as antifungal agents in textiles and paper, wood pulp and paper mill systems, breweries, and industrial cooling systems. Triphenyltin derivatives are used as active components of antifungal paints and agricultural fungicides. Other triorganotins are used as miticides and acaricides. Tributyltin oxide has been extensively used as a wood preservative.
Tributyltin compounds were once widely used as marine anti-biofouling agents to improve the efficiency of ocean-going ships. Concerns over toxicity of these compounds led to a worldwide ban by the International Maritime Organization.
Organotin complexes have been studied in anticancer therapy.

Toxicity

The toxicities of tributyltin and triphenyltin derivatives compounds are comparable to that of hydrogen cyanide. Furthermore, tri-n-alkyltins are phytotoxic and therefore cannot be used in agriculture. Depending on the organic groups, they can be powerful bactericides and fungicides. Reflecting their high bioactivity, "tributyltins" were once used in marine anti-fouling paint.
In contrast to the triorganotin compounds, monoorgano, diorgano- and tetraorganotin compounds are far less dangerous.
DBT may however be immunotoxic.