Nowhere continuous function


In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain. If f is a function from real numbers to real numbers, then f is nowhere continuous if for each point x there is an such that for each we can find a point y such that and. Therefore, no matter how close we get to any fixed point, there are even closer points at which the function takes not-nearby values.
More general definitions of this kind of function can be obtained, by replacing the absolute value by the distance function in a metric space, or by using the definition of continuity in a topological space.

Dirichlet function

One example of such a function is the indicator function of the rational numbers, also known as the Dirichlet function. This function is denoted as IQ or 1Q and has domain and codomain both equal to the real numbers. IQ equals 1 if x is a rational number and 0 if x is not rational.
More generally, if E is any subset of a topological space X such that both E and the complement of E are dense in X, then the real-valued function which takes the value 1 on E and 0 on the complement of E will be nowhere continuous. Functions of this type were originally investigated by Peter Gustav Lejeune Dirichlet.

Hyperreal characterisation

A real function f is nowhere continuous if its natural hyperreal extension has the property that every x is infinitely close to a y such that the difference is appreciable.