Geometric and algebraic interpretations of normality
A morphism of varieties is finite if the inverse image of every point is finite and the morphism is proper. A morphism of varieties is birational if it restricts to an isomorphism between dense open subsets. So, for example, the cuspidal cubiccurveX in the affine plane A2 defined by x2 = y3 is not normal, because there is a finite birational morphism A1 → X which is not an isomorphism. By contrast, the affine lineA1 is normal: it cannot be simplified any further by finite birational morphisms. A normal complex variety X has the property, when viewed as a stratified space using the classical topology, that every link is connected. Equivalently, every complex point x has arbitrarily small neighborhoods U such that U minus the singular set of X is connected. For example, it follows that the nodal cubic curveX in the figure, defined by x2 = y2, is not normal. This also follows from the definition of normality, since there is a finite birational morphism from A1 to X which is not an isomorphism; it sends two points of A1 to the same point in X. More generally, a scheme X is normal if each of its local rings is an integrally closed domain. That is, each of these rings is an integral domainR, and every ring S with R ⊆ S ⊆ Frac such that S is finitely generated as an R-module is equal to R. This is a direct translation, in terms of local rings, of the geometric condition that every finite birational morphism to X is an isomorphism. An older notion is that a subvariety X of projective space is linearly normal if the linear system giving the embedding is complete. Equivalently, X ⊆ Pn is not the linear projection of an embedding X ⊆ Pn+1. This is the meaning of "normal" in the phrases rational normal curve and rational normal scroll. Every regular scheme is normal. Conversely, showed that every normal variety is regular outside a subset of codimension at least 2, and a similar result is true for schemes. So, for example, every normal curve is regular.
The normalization
Any reduced schemeX has a unique normalization: a normal scheme Y with an integral birational morphism Y → X. The normalization of a scheme of dimension 1 is regular, and the normalization of a scheme of dimension 2 has only isolated singularities. Normalization is not usually used for resolution of singularities for schemes of higher dimension. To define the normalization, first suppose that X is an irreducible reduced scheme X. Every affine open subset of X has the form Spec R with R an integral domain. Write X as a union of affine open subsets Spec Ai. Let Bi be the integral closure of Ai in its fraction field. Then the normalization of X is defined by gluing together the affine schemes Spec Bi.
Examples
If the initial scheme is not irreducible, the normalization is defined to be the disjoint union of the normalizations of the irreducible components.
Normalization of a cusp
Consider the affine curvewith the cusp singularity at the origin. Its normalization can be given by the mapinduced from the algebra map
Normalization of axes in affine plane
For example,is not an irreducible scheme since it has two components. Its normalization is given by the scheme morphisminduced from the two quotient maps