Non-24-hour sleep–wake disorder


Non-24-hour sleep–wake disorder is one of several chronic circadian rhythm sleep disorders. It is defined as a "chronic steady pattern comprising daily delays in sleep onset and wake times in an individual living in a society". Symptoms result when the non-entrained endogenous circadian rhythm drifts out of alignment with the light–dark cycle in nature. Although this sleep disorder is more common in blind people, affecting up to 70% of the totally blind, it can also affect sighted people. Non-24 may also be comorbid with bipolar disorder, depression, and traumatic brain injury. The American Academy of Sleep Medicine has provided CRSD guidelines since 2007 with the latest update released in 2015.

Sighted

In people with non-24, the body essentially insists that the length of a day is appreciably longer than 24 hours and refuses to adjust to the external light–dark cycle. This makes it impossible to sleep at normal times and also causes daily shifts in other aspects of the circadian rhythm such as peak time of alertness, body temperature minimum, metabolism and hormone secretion. Non-24-hour sleep–wake disorder causes a person's sleep–wake cycle to move around the clock every day, to a degree dependent on the length of the cycle, eventually returning to "normal" for one or two days before "going off" again. This is known as free-running sleep.
People with the disorder may have an especially hard time adjusting to changes in "regular" sleep–wake cycles, such as vacations, stress, evening activities, time changes like daylight saving time, travel to different time zones, illness, medications, changes in daylight hours in different seasons, and growth spurts, which are typically known to cause fatigue. They also show lower sleep propensity after total sleep deprivation than do normal sleepers.
Non-24 can begin at any age, not uncommonly in childhood. It is sometimes preceded by delayed sleep phase disorder.
Most people with this disorder find that it severely impairs their ability to function in school, in employment, and in their social lives. Typically, they are "partially or totally unable to function in scheduled activities on a daily basis, and most cannot work at conventional jobs". Attempts to keep conventional hours by people with the disorder generally result in insomnia and excessive sleepiness, to the point of falling into microsleeps, as well as myriad effects associated with acute and chronic sleep deprivation. Sighted people with non-24 who force themselves to live to a normal workday "are not often successful and may develop physical and psychological complaints during waking hours, i.e. sleepiness, fatigue, headache, decreased appetite, or depressed mood. Patients often have difficulty maintaining ordinary social lives, and some of them lose their jobs or fail to attend school."

Blind

It has been estimated that non-24 occurs in more than half of all people who are totally blind. The disorder can occur at any age, from birth onwards. It generally follows shortly after loss or removal of a person’s eyes, as the photosensitive ganglion cells in the retina are also removed.
Without light to the retina, the suprachiasmatic nucleus, located in the hypothalamus, is not cued each day to synchronize the circadian rhythm to the 24-hour social day, resulting in non-24 for many totally blind individuals. Non-24 is rare among visually impaired patients who retain at least some light perception. Researchers have found that even minimal light exposure at night can affect the body clock.

Symptoms

People with this disorder might find it difficult to follow a regular clock scheme, as their biological clock can shift so much that they are sleepy during the day and experience insomnia during night. Another common diagnostic feature is the cyclical nature of non-24: people will experience certain periods, whether they be weeks or months, of sleeping during the day that alternate with periods of sleeping during normal nighttime hours.
Symptoms reported by patients forced into a 24-hour schedule are similar to those of sleep deprivation and can include:
The possible causes of non-24-hour sleep-wake disorder are 2-fold:, extrinsic: isolation from daily light cycles ; and, intrinsic: where some condition, such as blindness or malfunctioning biochemical response to light in the subject - prevent normal levels of light-activated melatonin release. Melatonin is responsible for sleep regulation, and its release is controlled by the amount of light entering the eyes.

Sighted

Sighted people with non-24 appear to be more rare than blind people with the disorder and the etiology of their circadian disorder is less well understood. At least one case of a sighted person developing non-24 was preceded by head injury; another patient diagnosed with the disorder was later found to have a "large pituitary adenoma that involved the optic chiasma". Thus the problem appears to be neurological. Specifically, it is thought to involve abnormal functioning of the suprachiasmatic nucleus in the hypothalamus. Several other cases have been preceded by chronotherapy, a prescribed treatment for delayed sleep phase disorder. "Studies in animals suggest that a hypernyctohemeral syndrome could occur as a physiologic aftereffect of lengthening the sleep–wake cycle with chronotherapy". According to the American Academy of Sleep Medicine, "patients with free-running rhythms are thought to reflect a failure of entrainment".
There have been several experimental studies of sighted people with the disorder. McArthur et al. reported treating a sighted patient who "appeared to be subsensitive to bright light". In other words, the brain does not react normally to light. In 2002 Uchiyama et al. examined five sighted non-24 patients who showed, during the study, a sleep–wake cycle averaging 25.12 hours. That is appreciably longer than the 24.02-hour average shown by the control subjects in that study, which was near the average innate cycle for healthy adults of all ages: the 24.18 hours found by Charles Czeisler. The literature usually refers to a "one- to two-hour" delay per 24-hour day.
Uchiyama et al. had earlier determined that sighted non-24 patients' minimum core body temperature occurs much earlier in the sleep episode than the normal two hours before awakening. They suggest that the long interval between the temperature trough and awakening makes illumination upon awakening virtually ineffective, as per the phase response curve for light.
In their clinical review in 2007, Okawa and Uchiyama reported that people with non-24 have a mean habitual sleep duration of nine to ten hours and that their circadian periods average 24.8 hours.

Blind

As stated above, the majority of patients with non-24 are totally blind. The failure of entrainment is explained by the loss of photic input to the circadian clock. Non-24 is rare among visually impaired patients who retain at least some light perception; even minimal light exposure can synchronize the body clock. A few cases have been described in which patients are subjectively blind, but are normally entrained and have an intact response to the suppressing effects of light on melatonin secretion, indicating preserved neural pathways between the retina and hypothalamus.

Circadian rhythm

All living animals have an internal clock, the circadian rhythm, which is close to 24 hours' duration. For humans, the average duration is 24 hours 20 minutes, and individually some people have more or less than 24 hours. Everyday exposure to the morning light resets the circadian rhythm to 24 hours, so that there is no drifting.
However, people with non-24 have a circadian rhythm significantly longer than 24 hours, up to 26 hours. This makes it difficult to reset to 24 hours daily, just like it is difficult for people with a rhythm close to 24 hours to try to reset to 25 hours daily. The majority of people with non-24 are totally blind, and the failure of entrainment is explained by an absence of light input to reset the circadian clock. Their brains may have normal circadian clocks that do not receive input from the eyes about environmental light levels, as the clocks require a functioning retina, optic nerve, and visual processing center. This makes the sleep pattern variable from one day to the next, with different wake-up time and bedtime everyday.
People with a circadian rhythm that is quite near to 24 hours may be able to sleep on a conventional, socially acceptable schedule, that is, at night. Others, with a "daily" cycle upwards of 25 hours or more, may need to adopt a sleep pattern that is congruent with their free-running circadian clock: by daily shifts in their sleep times, which often results in satisfactory sleep but with negative social and occupational consequences.
The disorder also occurs in sighted people for reasons that are not well understood. Their circadian rhythms are not normal, often running to more than 25 hours. Their visual systems may function normally but their brains are incapable of making the large adjustment to a 24-hour schedule.
Though often referred to as non-24, for example by the FDA, the disorder is also known as: non-24-hour sleep–wake syndrome or disorder, free-running disorder, hypernychthemeral syndrome, hypernychthemeral sleep-wake cycle disturbance, circadian rhythm sleep disorder—free-running type or nonentrained type, non-24-hour circadian rhythm disorder.
The disorder is an invisible disability that can be "extremely debilitating in that it is incompatible with most social and professional obligations".

Mechanisms

The internal circadian clock, located in the hypothalamus of the brain, generates a signal that normally is slightly longer than 24 hours, on average 24 hours and 11 minutes. This slight deviation is, in almost everyone, corrected by exposure to environmental time cues, especially the light–dark cycle, which reset the clock and synchronize it to the 24-hour day. Morning light exposure resets the clock earlier, and evening exposure resets it later, thereby bracketing the rhythm to an average 24-hour period. If people who do not have non-24-hour sleep-wake disorder are deprived of external time cues, their circadian rhythms will "free-run" with a cycle of a little more than 24 hours, expressing the intrinsic period of each individual's circadian clock. The circadian rhythms of individuals with non-24 can resemble those of experimental subjects living in a time-isolated environment even though they are living in normal society.
The circadian clock modulates many physiological rhythms. The most easily observed of these is the propensity for sleep and wake; thus, people with non-24 experience symptoms of insomnia and daytime sleepiness when their endogenous circadian rhythms drift out of synchrony with the social/solar 24-hour day, but they conform to a conventional schedule. Eventually, their circadian rhythms will drift back into normal alignment, when symptoms temporarily resolve. Thus the overall pattern involves periodic symptoms on a weekly or monthly basis, depending on the length of the internal circadian cycle. For example, an individual with a circadian period of 24.5 hours would drift 30 minutes later each day and would be maximally misaligned every 48 days. If patients set their own schedule for sleep and wake, aligned to their endogenous non-24 period, symptoms of insomnia and wake-time sleepiness are much reduced. However, such a schedule is incompatible with most occupations and social relationships.
The AASM suggests that non-24 might be different disorders in sighted and blind people, with different internal and external contributing factors—as these can affect treatment response, different treatments could be needed. Future studies should therefore try to identify and assess these factors.

Diagnosis

Non-24-hour sleep–wake disorder is diagnosed when the patient fails to follow a 24-hour light-dark cycle and clock times. As such, the entrainment status physiologically defines this disorder and can thus be used as the sole outcome measure. This is similar to elevated blood pressure characterizing essential hypertension. In contrast to other circadian rhythm sleep disorders, a diagnosis of non-24-hour sleep-wake disorder requires the documentation of progressive shifting of the sleep-wake times over at least 14 days using sleep diaries and/or actigraphy.
This disorder can have symptomatic periods, where "the time of high sleep propensity gradually shifts, such that patients experience daytime hypersomnolence and nighttime insomnia".
In sighted people, the diagnosis is typically made based on a history of persistently delayed sleep onset that follows a non-24-hour pattern. In their large series, Hayakawa reported the average day length was 24.9 ± 0.4 hours. There may be evidence of "relative coordination" with the sleep schedule becoming more normal as it coincides with the conventional timing for sleep. Most reported cases have documented a non-24-hour sleep schedule with a sleep diary or actigraphy. In addition to the sleep diary, the timing of melatonin secretion or core body temperature rhythm has been measured in a few patients who were enrolled in research studies, confirming the endogenous generation of the non-24-hour circadian rhythm.
The disorder can be considered very likely in a totally blind person with periodic insomnia and daytime sleepiness, although other causes for these common symptoms need to be ruled out. In the research setting, the diagnosis can be confirmed, and the length of the free-running circadian cycle can be ascertained, by periodic assessment of circadian marker rhythms, such as the core body temperature rhythm, the timing of melatonin secretion, or by analyzing the pattern of the sleep–wake schedule using actigraphy. Most recent research has used serial measurements of melatonin metabolites in urine or melatonin concentrations in saliva. These assays are not currently available for routine clinical use.

Medical classification

NameCodeSourceYearCitation
Non-24-Hour Sleep-Wake Rhythm DisorderICSD-32014
Non-24-Hour Sleep–Wake Syndrome 780.55-2ICSD-22005
Non-24-Hour Sleep–Wake Syndrome 780.55-2ICSD Revised1997
Non-24-Hour Sleep–Wake Syndrome 780.55-2ICSD1990
Non-24-Hour Sleep–Wake SyndromeC.2.dDCSAD1979

Since 2005, the disorder has been recognized by name in the U.S. National Center for Health Statistics and the U.S. Centers for Medicare and Medicaid Services in their adaptation and extension of the WHO's International Statistical Classification of Diseases and Related Health Problems :
Since 2013, the disorder has been recognized by the American Psychiatric Association:

Tasimelteon

The Food and Drug Administration approved in January 2014 the melatonin agonist tasimelteon for the treatment of non-24 for blind people. This is the first FDA-approved drug for any circadian rhythm sleep disorder, since melatonin is unregulated. In the largest treatment study with non-24 patients, it was demonstrated that tasimelteon safely and effectively treated totally blind patients: entrainment occurred in 20% of patients receiving the drug compared with 3% receiving placebo. In a separate meta-analysis, melatonin supplementation achieved a 67% entrainment rate. Studies directly comparing tasimelteon and melatonin have yet to be performed. Study authors noted that the lower rates of entrainment with tasimelteon may have been due to short duration of treatment.

Melatonin, light therapy and dark therapy

administration 1 hour before bedtime is considered another treatment for those suffering from non-24. However, it is important to note that melatonin may only treat the inability to sleep and may not help to improve the daytime sleepiness.
Light therapy, which involves a bright light exposure of thousands of lux of white light or about 400 lux of blue light on awakening to counteract the tendency for circadian rhythms to delay, is not currently recommended until more studies appear, although it has been found to be effective in some cases. This can be combined with dark therapy, which involves filtering blue light and preferring red-colored lights with a low amount of lux in the few hours before bedtime to avoid melatonin suppression.
Both melatonin administration and light therapy work by shifting circadian rhythms according to a phase response curve, with the melatonin PRC being essentially the inverse of the light PRC. Furthermore, light can suppress melatonin secretion. Both have a duration of approximately 12 hours, in opposite phase: light PRC spikes at the beginning of the day and lowers throughout the day with a depression after 8 hours for the last 4 hours, whereas natural melatonin spikes at the start of the biological night and drops around the time of waking up or light perception. The first 8 hours are called the "advance zone" whereas the last few hours the "delay zone". The change from advancement to delay zones is progressive, passing through a long area of no effect, but the change from delay to advancement is abrupt, occurring a few hours before wake-up time or bedtime for light or melatonin respectively. When melatonin supplementation is taken in the melatonin PRC advance zone, it resets the clock earlier; when taken in the melatonin PRC delay zone, it shifts the clock later. In other words, melatonin has most effect when it is taken at times when natural melatonin is not normally present, thus during the day: when taken in the morning, melatonin causes phase delays, and when taken in the afternoon/evening it causes phase advances. However, for a sleep phase delayed person, the time of biological morning and biological afternoon/evening might differ depending on the circadian clock shift in the affected person. This means that if melatonin is taken during the usual bedtime and wake-up time, it may have no effect. Therefore, successful entrainment depends on both the melatonin dosage and the appropriate timing of melatonin administration. The accuracy needed for successfully timing the administration of melatonin might require a period of trial and error, as does the dosage. However, entrainment was also observed when giving a dose of melatonin as low as 0.05 mg and without any timing, by just continuing melatonin administration at the same time everyday until the non-24 sufferer's circadian rhythm shifted enough to coincide with melatonin administration.
In addition to natural fluctuations within the circadian rhythm, seasonal changes including temperature, hours of daylight, light intensity and diet are likely to affect the efficacy of melatonin and light therapies since these exogenous zeitgebers would compete for hormonal homeostasis. Further to this, there are unforeseen disruptions to contend with even when a stabilized cycle is achieved, such as travel, exercise, stress, alcohol, or even the use of light-emitting technology close to a subjective evening/night.

Prevalence

There are an estimated 140,000 people with non-24—both sighted and blind—in the European Union, a total prevalence of approximately 3 per 10,000, or 0.03%. It is unknown how many individuals with this disorder do not seek medical attention, so incidence may be higher. The European portal for rare diseases, Orphanet, lists non-24 as a rare disease by their definition: fewer than 1 affected person for every 2000 population. The US National Organization for Rare Disorders lists non-24 as a rare disease by its definition.

Blind

While both sighted and blind people are diagnosed with non-24, the disorder is believed to affect up to 70% of totally blind individuals. It is estimated by researchers that of the 1.3 million blind people in the U.S., 10% have no light perception at all. Of that group, it is estimated that approximately half to three-quarters, or 65,000 to 95,000 Americans, suffer from non-24.

History

In the 1980s and 1990s, several trials of melatonin administration to totally blind individuals without light perception produced improvement in sleep patterns, but it was unclear at that time if the benefits were due to entrainment from light cues. The ability of melatonin administration to entrain free-running rhythms was first demonstrated by Redman, et al. in 1983 in rats who were maintained in a time-free environment. Then, using endogenous melatonin as a marker for circadian rhythms, several research groups showed that appropriately timed melatonin administration could entrain free-running rhythms in the totally blind: they found that 6 out of 7 patients treated with 10 mg melatonin at bedtime were normally entrained, and when the dose was gradually reduced to 0.5 mg in three of the subjects, entrainment persisted. Subsequently, it was observed that treatment initiated with the 0.5 mg dose could produce entrainment on some patients. Interestingly, one subject who failed to entrain at a higher dose was successfully entrained at a lower dose. A low dose produces melatonin blood levels that are similar to the concentrations naturally produced by nightly pineal secretion.
There has been a constant growth in the field of melatonin and melatonin receptor agonists since the 1980s. In 2005, ramelteon was the first melatonin agonist to be approved in the United States, indicated for insomnia treatment in adults. Melatonin in the form of prolonged release was approved in 2007 in Europe for use as a short-term treatment, in patients 55 years and older, for primary insomnia. Tasimelteon received FDA approval in January 2014 for blind persons diagnosed with non-24. TIK-301 has been in phase II clinical trial in the United States since 2002 and the FDA granted it orphan drug designation in May 2004, for use as a treatment for circadian rhythm sleep disorder in blind individuals without light perception as well as individuals with tardive dyskinesia.
The first report and description of a case of non-24, a man living on 26-hour days, who happened to be sighted, was "A man with too long a day" by Ann L. Eliott et al. in November 1970. The related and more common delayed sleep phase disorder was not described until 1981.
The first detailed study of non-24 in a blind subject was by Miles Le and his colleagues in 1977. The researchers reported on a 28-year-old male who had a 24.9-hour rhythm in sleep, plasma cortisol, and other parameters. Even while adhering to a typical 24-hour schedule for bedtime, rise time, work, and meals, the man's body rhythms continued to shift.

Research

Not all totally blind individuals have free-running rhythms, and those that do often show relative coordination as their endogenous rhythms approximate normal timing. It has been suggested that there are non-photic time cues that are important for maintaining entrainment, but these cues still wait to be characterized.
Very preliminary research on light sensitivity suggest that not only insensitivity but also circadian hypersensitivity to light might be at play for patients with a delayed sleep phase disorder.

Society

explored the potential impact on circadian rhythm and possible development of a sleep–wake disorder by human astronauts who would go on a mission to Mars, by assessing mission personnel who worked remotely on the Phoenix Mars Lander project and were asked to follow a Mars day of 24.65 hours for 78 days.