In a spreadsheetfunctions can be nested one into another, making complex formulas. The function wizard of the OpenOffice.org Calc application allows to navigate through multiple levels of nesting, letting the user to edit each one of them separately. For example: =IF In this Microsoft Excel formula, the SUM function is nested inside the IF function. First, the formula calculates the sum of the numbers in the cells from C8 to G8. It then decides whether the sum is 0, and it displays the letter Y if the sum is 0, and the letter N if it is not. Naturally, to allow the mathematical resolution of these chained formulas, the inner expressions must be previously evaluated, and this outward direction is essential because the results that the internal functions return are temporarily used as entry data for the external ones. Due to the potential accumulation of parentheses in only one code line, editing and error detecting can became somehow awkward. That is why modern programming environments -as well as spreadsheet programs- highlight in bold type the pair corresponding to the current editing position. The balancing control of the opening and closing parenthesis known as brace match checking.
In programming
Control Structures
In structured programming languages, nesting is related to the enclosing of control structures one into another, usually indicated through different indentation levels within the source code, as it is shown in this simple BASIC function: function LookupCode as integer dim sLine, path as string dim ReturnValue as integer path="C:\Test.dsv" if FileExists then open path for input as #1 do while not EOF line input #1, sLine if codeleft then 'Action to be carried out End if loop close #1 End if LookupCode=ReturnValue end function
In this small and simple example, the conditional block “if... then... end if” is nested inside the “do while... loop” one. Some languages such as Pascal and Ada have no restrictions on declarations depending on the nesting level, allowing precisely nested subprograms or even nested packages. Here is an example of both : -- Getting rid of the global variables issue -- from a set of old sources, without the need to change that code's -- logic or structure. -- procedure Nesting_example_1 is type Buffer_type is array of Integer; procedure Decompress is -- Here are the legacy sources, translated: package X_Globals is index_in, index_out: Integer; -- *** ^ These variables are local to Decompress. -- *** Now Decompress is task-safe. end X_Globals; -- Methods 1,2,3,... package X_Method_1 is procedure Decompress_1; end X_Method_1; -- Methods 1,2,3,... package body X_Method_1 is use X_Globals; procedure Decompress_1 is begin index_in:= compressed'First; -- Here, the decompression code, method 1 end Decompress_1; end X_Method_1; -- End of the legacy sources begin X_Method_1.Decompress_1; end Decompress; test_in, test_out: Buffer_type; begin Decompress; end Nesting_example_1;