Nelson Diversity Surveys


The Nelson Diversity Surveys are a collection of data sets that quantify the representation of women and minorities among professors, by science and engineering discipline, at research universities. They consist of four data sets compiled by Dr. Donna Nelson, Professor of Chemistry at the University of Oklahoma during fiscal years 2002, 2005, 2007, and 2012. These surveys were each complete populations, rather than samples. Consequently, the Surveys quantified characteristics of the faculty which had never been revealed previously, drawing great attention from women and minorities. Furthermore, the Surveys initially came at a time when these underrepresented groups were becoming concerned and vocal about perceived inequities in academia. At the time the Surveys were initiated, the MIT Study of 1999, expressing the concerns of women scientists, had just been issued, and underrepresented minority science faculty noticed URM students increase among PhD recipients without a corresponding increase among recently hired professors. Because the NDS were complete populations, which disaggregated faculty by race, by rank, by gender, and by discipline, URM faculty had the documentation to support their concerns.
The NDS quantified the degree to which women and minorities are underrepresented on science and engineering faculties at research universities. Because the surveys were complete populations and disaggregated, the degree of underrepresentation was revealed, in ways it had never been revealed previously. For example, the FY 2002 survey showed that there were no Black, Hispanic, or Native American tenured or tenure track women faculty in the top 50 computer science departments. It also revealed that there were no Black or Native American assistant professors in the top 50 chemistry departments. Analogous surveys were carried out for top 100 departments in each of 15 science and engineering disciplines in fiscal years 2005, 2007 and 2012.
The Nelson Diversity Surveys made it possible for the first time to know the level and rate of faculty diversification, disaggregated by race, by rank, and by gender. Researchers in the 15 areas of science surveyed were enthusiastic to use these disaggregated faculty data, in order to compare against analogous student data, which had been available from NSF for decades. Many new programs to increase the representation of women and minorities among professors were implemented and PhD and MS research was based on data revealed by the NDS. The NDS were utilized by the National Science Foundation, National Institutes of Health, Department of Energy, US Congress, Sloan Foundation, the National Organization for Women, universities, and many other organizations interested in diversity in academics. A new area of research was spawned – the Science of Broadening Participation.

Methodology

During 2001 to 2003, Nelson surveyed department chairs in order to collect headcounts of tenured and tenure-track university faculty members of the "top 50" departments in each of 14 science and engineering disciplines. Data were collected about race/ethnicity, rank, and gender, and are complete populations, rather than samples. Consequently, they accurately reveal the small number or complete absence of underrepresented groups. Data for all disciplines were obtained in a relatively short time and by a consistent protocol and are therefore comparable across this relatively large number of disciplines. This entire data set became known as the FY2002 Nelson Diversity Surveys.
The NDS determined demographics of tenured / tenure track faculty in a discipline at pertinent departments of "top" universities, ranked by the National Science Foundation according to research funding expenditures in that discipline. The FY2002 data were the first such data published, disaggregated by gender, by race, and by rank, about faculty at the top 50 research universities in each of 14 science and engineering disciplines. The FY2005 survey was expanded to include the "top 100" departments in each of 15 disciplines. In some cases, slightly fewer than 100 schools were ranked by NSF for a discipline. Data were collected by surveying department chairs, who provided their own department's faculty data, disaggregated by gender, by race/ethnicity, and by rank.

Nelson Diversity Survey Data Availability

The data tables, which constitute the Nelson Diversity Surveys, were rapidly made available publicly, freely and online, so that constituents could use them for their own purposes. Data tables for NDS FY2002, FY2005, and FY2007 are listed there by discipline, so that each discipline has a group of links listed below it. Each link points to a table for that discipline. Disciplines are presented there so that the last discipline added to the NDS is at the top of the list, and below that the disciplines are organized roughly according to similarities among data for disciplines. Within discipline headings, tables are listed by survey year, and within the year of the survey, tables are listed either by the group of “top 50” ranked departments or the next group of departments, ranked 51 - ~100. There are a total of about 75 such tables of departmental data at the website.
Within each table of departments, data giving characteristics of tenured and tenure track professors are provided by race/ethnicity, by rank, and by gender. The table of the first discipline surveyed in the FY2002 NDS is provided as an example in Figure 1. In Figure 1, the first column lists chemistry departments, NSF-ranked as 1-50, according to chemical research funding expenditures. The next group of four columns provides White faculty headcount, disaggregated by rank. The next analogous four groups of columns give similar rank-disaggregated headcount data for Blacks, for Hispanics, for Asians, and for Native Americans. The final column in the table is the sum of all faculty in each department. Gender data are provided in each number after the decimal point, so that a number such as 35.003 means 35 people, 3 of whom are women.
Final reports of two NDS are given online. Each of these reports analyzes the NDS data collected that fiscal year, by using summary tables which compare the NDS data at the discipline level. A summary table showing data for Asians from the FY2007 NDS is given in Figure 2. This summary table provides, by discipline, the representation of Asians as a percentage of BS recipients, PhD recipients, assistant professors, associate professors, full professors, and all professors. Analogous summary tables were created, which provided data for Blacks, Hispanics, Native Americans, women, and White males. Such NDS summary tables enabled the first quantification of women proceeding through the academic STEM “pipeline” from BS to full professor, and they were used by women's groups and organizations widely.

Results of each NDS

The FY 2012 Surveys have been completed, and a final written report with all data tables for this set of surveys are available in Chapter 2 of "Diversity in the Scientific Community Volume 1: Quantifying Diversity and Formulating Success." This report includes bar graphs, which include 2002, 2005, 2007, and 2012 data for the top 50 departments in each of the 15 STEM disciplines. Each bar graph reveals trends over time for all 15 STEM disciplines. One set of bar graphs is given for assistant professors, which reveals trends in hiring. A second set of bar graphs is given for professors of all ranks combined, which reveals changing faculty demographics available for mentoring, role models, and other influences in higher ed. Because these very powerful surveys are whole populations and all data are available in this report, additional studies are enabled for the first time; data could be extracted from the data tables so that analogous bar graphs could be made on very small underrepresented groups, such as underrepresented minority female assistant professors.
The FY 2007 Surveys final report is available online, and its analysis focused mostly on minorities. Excerpts from its executive summary follow.
This NDS quantified faculty of top 100 departments of 15 science and engineering disciplines, showed that minorities and women were significantly underrepresented. There were relatively few tenured and tenure-track underrepresented minority faculty in these research university departments, even though a growing number and percentage of minorities were completing their PhDs. Qualified minorities were not joining faculties of many science and engineering disciplines. However, in some engineering disciplines, there was a better match between the percentage of URMs in recent PhD attainment versus among assistant professors. The percentage of URMs in science and engineering BS attainment generally increased over time, but URM students were likely to find themselves without minority faculty as optimal role models and mentors. In most disciplines, URM faculty were so few that a minority student could get a BS or PhD without ever being taught by or having access to a URM professor in that discipline. There were few minority full professors in the physical sciences and engineering disciplines studied; the highest percentage of all URMs combined among full professors was less than 5%. However, there was a disproportionately large number of White male professors as role models for White male students. For example, in 2005, 16.7% of the students who graduated with a BS in chemistry were URMs, but in 2007, only 3.9% of faculty at the top 100 chemistry departments were URMs. For females, those percentages were 51.7% of BS recipients and 13.7% of faculty, respectively. In contrast, the corresponding percentages for White males were 37.4% of BS recipients and 74.2% of faculty, respectively.
In most disciplines studied, the percentage of URMs among recent PhD recipients was significantly greater than their percentage among assistant professors, indicating under-utilization; exceptions included civil engineering and mechanical engineering. In the top 50 departments of chemistry and math, the percentage of Hispanic and Native American faculty among assistant professors was lower than among associate professors, revealing a decline in hiring those minorities. In contrast, in all disciplines studied, the highest percentage of female faculty was at the level of assistant professor, as a result of increased recent hiring of women.
Comparing the representation of URMs among assistant professors in the top 50 departments, versus those in the next group of 50, gave mixed results; in engineering, the top 50 departments had higher percentages of URMs, while the top 50 chemistry, math, and computer science departments had lower representations of URMs than did the group of next 50 departments. URM women faculty, especially “full” professors, were almost nonexistent in physical sciences and engineering departments at research universities. Surprisingly, most of the few female minority full professors in those disciplines were not born in the U.S.
The FY 2005 Surveys have no final written report, but the data tables are available online.
The FY 2002 Surveys final report is available online, and its analysis focused mostly on women. Selections from its executive summary follows.
This NDS was the first national and comprehensive analysis of tenured and tenure track faculty in the “top 50” departments of 14 science and engineering disciplines, quantifying faculty headcount and the underrepresentation of minorities and women among faculty. There were few tenured and tenure-track women faculty in these departments in research universities, even though a growing number of women were completing their PhDs. Qualified women were not going to science and engineering departments. In some engineering disciplines, there was a better match between the representation of females in PhD attainment versus the faculty, but these disciplines were the ones with very low percentages of females in PhD attainment. Underrepresented minority women faculty were almost nonexistent in science and engineering departments at research universities. In the “top 50” computer science departments, there were no Black, Hispanic, or Native American tenured or tenure track women faculty. For chemistry and chemical engineering faculties, additional national origin data revealed that recently, more immigrants had been hired as faculty than had American females and American minorities combined.
The percentage of women in BS attainment in science and engineering continued to increase over time, but they were likely to find themselves without the female faculty needed for optimal role models. In some disciplines, it was likely that a woman could get a bachelor of science without being taught by a female professor in that discipline; it was also possible for a woman to get a PhD in science or engineering without having access to a woman faculty member in her field. There were a drastically disproportionate number of male professors as role models for male students. For example, in 2000, 48.2% of the students graduating with a BS in math were women, but in 2002, only 8.3% of the faculty was female. The percentage of women among full professors ranged from 3% to 15%.
In all but one discipline surveyed, the highest percentage of female faculty was at the level of assistant professor, which was still lower than the percentage of women among recent PhD recipients. Even in disciplines where women outnumbered men earning PhDs, the percentage of assistant professors who were White male was greater than that of females. For example, in psychology, 66.1% of the PhDs between 1993 and 2002 were women; while in 2002, they accounted for only 45.4% of the assistant professors. The data demonstrated that while the representation of females in science and engineering PhD attainment had significantly increased in recent years, the corresponding faculties were still overwhelmingly dominated by White men. In most science disciplines, the percentage of women among faculty recently hired was not comparable to that of recent women PhDs.

Impacts

Nelson's diversity research has been cited by dozens of newspapers, magazines, and journals, including Nature, The New York Times, The Christian Science Monitor, and CNN. The Government Accountability Office used Nelson's data for its July 2004 report to Congress on Title IX, specifically addressing women's access to opportunities in the sciences. Nelson has also written about diversity in the STEM fields for outlets, such as PBS and the Association for Women in Science.
New programs designed and installed
Many educational institutions used the Nelson Diversity Surveys to implement new programs and to increase the diversity on their own campuses. Some of these had been awarded NSF ADVANCE grants; in some instances, the NDS were cited or obviously used in the resulting ADVANCE program postings.
Table 1. NSF ADVANCE IT Grant Use of Nelson Diversity Surveys
InstitutionAward yearGrant duration Application
University of Washington20014A,C
University of Puerto Rico, Humacao20014A
Georgia Institute of Technology20015A
University of California, Irvine20015A
New Mexico State University20024A
Hunter College, City University of New York20025A
University of Colorado, Boulder20025A
University of Pittsburgh20024-
University of Michigan, Ann Arbor20025-
University of Wisconsin, Madison20025-
Virginia Polytechnic Institute and State University20035A,C
University of Illinois, Chicago20032A
Syracuse University20033A
Iowa State University20034A
Case Western Reserve University20035A
Kansas State University20035A
University of Alabama at Birmingham20035A
University of Rhode Island20035A
Louisiana State University20033-
University of Central Florida20033-
University of Connecticut20033-
University of Montana20034-
University of Utah20034-
University of Maryland, Baltimore County20035-
University of Texas at El Paso20035-
Utah State University20035-
Columbia University's Earth Institute20045A
AAAS20053-
Cornell University20065A,B
Rice University20065A,C
California State Polytechnic University, Pomona20065A
Iowa State University20065A
Rensselaer Polytechnic Institute20065A
University of Illinois, Chicago20065A
University of North Carolina at Charlotte20065A
Brown University20065C
University of Arizona20065C
Duke University20063-
Marshall University20063-
New Jersey Institute of Technology20063-
University of Maryland Eastern Shore20063-
Cal Poly Pomona Foundation, Inc.20066-
Rensselaer Polytechnic Institute20066-
Cornell University20066A
University of Washington20065-
Guardians of Honor20071-
University of Nebraska-Lincoln20085-
Ohio State University Research Foundation20085A
Rutgers University New Brunswick20085A
Washington State University20085-
North Dakota State University Fargo20085B,C
Northeastern University20085B
Wright State University20085-
Michigan State University20085-
Purdue University20085A
Association for Women in Science, Inc.20091A
University of Arkansas20092-
American Association For Advancement Science20104-
Jackson State University20105-
Syracuse University20105-
New Jersey Institute of Technology20102-
University of Maine20105-
Texas A&M University Main Campus20105A
Lehigh University20105-
University of Maryland College Park20105A
West Virginia University Research Corporation20105-
University of New Hampshire20125-
University of California-Davis20125A, B, C
Rochester Institute of Tech20125-
University of Cincinnati20125-
University of Virginia20125-

Table 1. legend: A=Uses NDS data for comparison or analysis, B=Cites NDS data, C=Provides link to NDS tables.
New research at universities
Students at many universities analyzed NDS data for their PhD and MS research on issues pertinent to women, minorities, or both.
New area of research spawned
Due to the interest and research generated in faculty diversity, and because of the great impact and increasing potential for impact, a new area of research was spawned at NSF during the years 2007 to 2012 – the Science of Broadening Participation.
NDS coupled with other similar programs