Myriapoda


Myriapoda is a subphylum of arthropods containing millipedes, centipedes, and others. The group contains over 16,000 species, most of which are terrestrial. Although their name suggests they have myriad legs, myriapods range from having up to 750 legs to having fewer than ten legs.
The fossil record of myriapods reaches back into the late Silurian, although molecular evidence suggests a diversification in the Cambrian Period, and Cambrian fossils exist which resemble myriapods. The oldest unequivocal myriapod fossil is of the millipede Pneumodesmus newmani, from the late Silurian. P. newmani is also important as the earliest known terrestrial animal. The phylogenetic classification of myriapods is still debated.
The scientific study of myriapods is myriapodology, and those who study myriapods are myriapodologists.

Anatomy

Myriapods have a single pair of antennae and, in most cases, simple eyes. Exceptions include the large and well-developed compound eyes of Scutigera The mouthparts lie on the underside of the head, with an "epistome" and labrum forming the upper lip, and a pair of maxillae forming the lower lip. A pair of mandibles lie inside the mouth. Myriapods breathe through spiracles that connect to a tracheal system similar to that of insects. There is a long tubular heart that extends through much of the body, but usually few, if any, blood vessels.
Malpighian tubules excrete nitrogenous waste into the digestive system, which typically consists of a simple tube. Although the ventral nerve cord has a ganglion in each segment, the brain is relatively poorly developed.
During mating, male myriapods produce a packet of sperm, or spermatophore, which they must transfer to the female externally; this process is often complex and highly developed. The female lays eggs which hatch as much-shortened versions of the adults, with only a few segments and as few as three pairs of legs. The young add additional segments and limbs as they repeatedly moult to reach the adult form.

Ecology

Myriapods are most abundant in moist forests, where they fulfill an important role in breaking down decaying plant material, although a few live in grasslands, semi-arid habitats or even deserts. A very small percentage of species are littoral. The majority are detritivorous, with the exception of centipedes, which are chiefly nocturnal predators. A few species of centipedes and millipedes are able to produce light and are therefore bioluminescent Pauropodans and symphylans are small, sometimes microscopic animals that resemble centipedes superficially and live in soils. Millipedes differ from the other groups in having their body segments fused into pairs, giving the appearance that each segment bears two pairs of legs, while the other three groups have a single pair of legs on each body segment.
Although not generally considered dangerous to humans, many millipedes produce noxious secretions which in rare cases can cause temporary blistering and discolouration of the skin. Large centipedes, however, can bite humans, and although the bite may cause intense pain and discomfort, fatalities are extremely rare.

Classification

There has been much debate as to which arthropod group is most closely related to the Myriapoda. Under the Mandibulata hypothesis, Myriapoda is the sister taxon to Pancrustacea, a group comprising the Crustacea and Hexapoda. Under the Atelocerata hypothesis, Hexapoda is the closest, whereas under the Paradoxopoda hypothesis, Chelicerata is the closest. This last hypothesis, although supported by few, if any, morphological characters, is supported by a number of molecular studies.
A 2020 study found numerous characters of the eye and preoral region suggesting that the closest relatives to crown myriapods are the extinct Euthycarcinoids. There are four classes of extant myriapods, Chilopoda, Diplopoda, Pauropoda and Symphyla, containing a total of around 12,000 species. While each of these groups of myriapods is believed to be monophyletic, relationships among them are less certain.

Centipedes

s make up the class Chilopoda. They are fast, predatory and venomous, hunting mostly at night. There are around 3,300 species, ranging from the diminutive Nannarrup hoffmani to the giant Scolopendra gigantea, which may exceed.

Millipedes

Millipedes form the class Diplopoda. Most millipedes are slower than centipedes, and feed on leaf litter and detritus. They are distinguished by the fusion of each pair of body segments into a single unit, giving the appearance of having two pairs of legs per segment. Around 12,000 species have been described, which may represent less than a tenth of the true global millipede diversity. The name "millipede" is a compound word formed from the Latin roots millia and pes , although millipedes typically have between 36 and 400 legs. One species, Illacme plenipes, has the greatest number of legs of any animal, with 750. Pill millipedes are much shorter, and are capable of rolling up into a ball, like pillbugs.

Symphyla

About 200 species of them are known worldwide. They resemble centipedes but are smaller and translucent. Many spend their lives as soil infauna, but some live arboreally. Juveniles have six pairs of legs, but, over a lifetime of several years, add an additional pair at each moult so that the adult instar has twelve pairs of legs.

Pauropoda

is another small group of small myriapods. They are typically 0.5–2.0 mm long and live in the soil on all continents except Antarctica. Over 700 species have been described. They are believed to be the sister group to millipedes, and have the dorsal tergites fused across pairs of segments, similar to the more complete fusion of segments seen in millipedes.

Arthropleuridea

ns were ancient myriapods that are now extinct, known from the late Silurian to the Permian. The most famous members are from the genus Arthropleura, which was a giant, probably herbivorous, animal that could be up to long, but the group also includes species less than. Arthropleuridea was historically considered a distinct class of myriapods, but since 2000 scientific consensus has viewed the group as a subset of millipedes, although the relationship of arthropleurideans to other millipedes and to each other is debated.

Myriapod relationships

A variety of groupings of the myriapod classes have been proposed, and married, some of which are mutually exclusive, and all of which represent hypotheses of evolutionary relationships. Traditional relationships supported by morphological similarities are challenged by newer relationships supported by molecular evidence.