In 1944, Lewis Ferry Moody plotted the Darcy–Weisbach friction factor against Reynolds number Re for various values of relative roughness ε / D. This chart became commonly known as the Moody Chart or Moody Diagram. It adapts the work of Hunter Rouse but uses the more practical choice of coordinates employed by R. J. S. Pigott, whose work was based upon an analysis of some 10,000 experiments from various sources. Measurements of fluid flow in artificially roughened pipes by J. Nikuradse were at the time too recent to include in Pigott's chart. The chart's purpose was to provide a graphical representation of the function of C. F. Colebrook in collaboration with C. M. White, which provided a practical form of transition curve to bridge the transition zone between smooth and rough pipes, the region of incomplete turbulence.
Description
Moody's team used the available data to show that fluid flow in rough pipes could be described by four dimensionless quantities. They then produced a single plot which showed that all of these collapsed onto a series of lines, now known as the Moody chart. This dimensionless chart is used to work out pressure drop, and flow rate through pipes. Head loss can be calculated using the Darcy–Weisbach equation in which the Darcy friction factor appears : Pressure drop can then be evaluated as: or directly from where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of roughness of the pipe to the pipe diameter or. The Moody chart can be divided into two regimes of flow: laminar and turbulent. For the laminar flow regime, roughness has no discernible effect, and the Darcy–Weisbach friction factor was determined analytically by Poiseuille: For the turbulent flow regime, the relationship between the friction factor the Reynolds number Re, and the relative roughness is more complex. One model for this relationship is the Colebrook equation :
This formula must not be confused with the Fanning equation, using the Fanning friction factor , equal toone fourth the Darcy-Weisbach friction factor. Here the pressure drop is: