Modified Newtonian dynamics


Modified Newtonian dynamics is a hypothesis that proposes a modification of Newton's laws to account for observed properties of galaxies. It is an alternative to the hypothesis of dark matter in terms of explaining why galaxies do not appear to obey the currently understood laws of physics.
Created in 1982 and first published in 1983 by Israeli physicist Mordehai Milgrom, the hypothesis' original motivation was to explain why the velocities of stars in galaxies were observed to be larger than expected based on Newtonian mechanics. Milgrom noted that this discrepancy could be resolved if the gravitational force experienced by a star in the outer regions of a galaxy was proportional to the square of its centripetal acceleration, or alternatively if gravitational force came to vary inversely with radius. In MOND, violation of Newton's laws occurs at extremely small accelerations, characteristic of galaxies yet far below anything typically encountered in the Solar System or on Earth.
MOND is an example of a class of theories known as modified gravity, and is an alternative to the hypothesis that the dynamics of galaxies are determined by massive, invisible dark matter halos. Since Milgrom's original proposal, proponents of MOND have claimed to successfully predict a variety of galactic phenomena that they state are difficult to understand as consequences of dark matter. However, MOND and its generalisations do not adequately account for observed properties of galaxy clusters, and no satisfactory cosmological model has been constructed from the hypothesis.
The accurate measurement of the speed of gravitational waves compared to the speed of light in 2017 ruled out many theories which used modified gravity to rule out dark matter.
However, both Milgrom's bi-metric formulation of MOND and nonlocal MOND are not ruled out according to the same study.

Overview

Several independent observations point to the fact that the visible mass in galaxies and galaxy clusters is insufficient to account for their dynamics, when analysed using Newton's laws. This discrepancy – known as the "missing mass problem" – was first identified for clusters by Swiss astronomer Fritz Zwicky in 1933 There exists in galaxies large quantities of unseen matter which boosts the stars' velocities beyond what would be expected on the basis of the visible mass alone, or 2) Newton's Laws do not apply to galaxies. The former leads to the dark matter hypothesis; the latter leads to MOND.
The basic premise of MOND is that while Newton's laws have been extensively tested in high-acceleration environments, they have not been verified for objects with extremely low acceleration, such as stars in the outer parts of galaxies. This led Milgrom to postulate a new effective gravitational force law that relates the true acceleration of an object to the acceleration that would be predicted for it on the basis of Newtonian mechanics. This law, the keystone of MOND, is chosen to reduce to the Newtonian result at high acceleration but leads to different behaviour at low acceleration:
Here FN is the Newtonian force, m is the object's mass, a is its acceleration, μ is an as-yet unspecified function, and a0 is a new fundamental constant which marks the transition between the Newtonian and deep-MOND regimes. Agreement with Newtonian mechanics requires
and consistency with astronomical observations requires
Beyond these limits, the interpolating function is not specified by the hypothesis, although it is possible to weakly constrain it empirically. Two common choices are the "simple interpolating function":
and the "standard interpolating function":
Thus, in the deep-MOND regime :
Applying this to an object of mass m in circular orbit around a point mass M, we find:
that is, the star's rotation velocity is independent of r, its distance from the centre of the galaxy – the rotation curve is flat, as required. By fitting his law to rotation curve data, Milgrom found to be optimal. This simple law is sufficient to make predictions for a broad range of galactic phenomena.
Milgrom's law can be interpreted in two different ways. One possibility is to treat it as a modification to the classical law of inertia, so that the force on an object is not proportional to the particle's acceleration a but rather to. In this case, the modified dynamics would apply not only to gravitational phenomena, but also those generated by other forces, for example electromagnetism. Alternatively, Milgrom's law can be viewed as leaving Newton's Second Law intact and instead modifying the inverse-square law of gravity, so that the true gravitational force on an object of mass m due to another of mass M is roughly of the form
In this interpretation, Milgrom's modification would apply exclusively to gravitational phenomena.
By itself, Milgrom's law is not a complete and self-contained physical theory, but rather an ad-hoc empirically motivated variant of one of the several equations that constitute classical mechanics. Its status within a coherent non-relativistic hypothesis of MOND is akin to Kepler's Third Law within Newtonian mechanics; it provides a succinct description of observational facts, but must itself be explained by more fundamental concepts situated within the underlying hypothesis. Several complete classical hypotheses have been proposed, which generally yield Milgrom's law exactly in situations of high symmetry and otherwise deviate from it slightly. A subset of these non-relativistic hypotheses have been further embedded within relativistic theories, which are capable of making contact with non-classical phenomena and cosmology. Distinguishing both theoretically and observationally between these alternatives is a subject of current research.
The majority of astronomers, astrophysicists and cosmologists accept dark matter as the explanation for galactic rotation curves, and are committed to a dark matter solution of the missing-mass problem. MOND, by contrast, is actively studied by only a handful of researchers. The primary difference between supporters of ΛCDM and MOND is in the observations for which they demand a robust, quantitative explanation and those for which they are satisfied with a qualitative account, or are prepared to leave for future work. Proponents of MOND emphasize predictions made on galaxy scales and believe that a cosmological model consistent with galaxy dynamics has yet to be discovered; proponents of ΛCDM require high levels of cosmological accuracy and argue that a resolution of galaxy-scale issues will follow from a better understanding of the complicated baryonic astrophysics underlying galaxy formation.

Observational evidence for MOND

Since MOND was specifically designed to produce flat rotation curves, these do not constitute evidence for the hypothesis, but every matching observation adds to support of the empirical law. Nevertheless, proponents claim that a broad range of astrophysical phenomena at the galactic scale are neatly accounted for within the MOND framework. Many of these came to light after the publication of Milgrom's original papers and are difficult to explain using the dark matter hypothesis. The most prominent are the following:
Milgrom's law requires incorporation into a complete hypotheses if it is to satisfy conservation laws and provide a unique solution for the time evolution of any physical system. Each of the theories described here reduce to Milgrom's law in situations of high symmetry, but produce different behaviour in detail.

Nonrelativistic

The first hypothesis of MOND was constructed in 1984 by Milgrom and Jacob Bekenstein. AQUAL generates MONDian behaviour by modifying the gravitational term in the classical Lagrangian from being quadratic in the gradient of the Newtonian potential to a more general function. In formulae:
where is the standard Newtonian gravitational potential and F is a new dimensionless function. Applying the Euler–Lagrange equations in the standard way then leads to a non-linear generalisation of the Newton–Poisson equation:
This can be solved given suitable boundary conditions and choice of F to yield Milgrom's law.
An alternative way to modify the gravitational term in the lagrangian is to introduce a distinction between the true acceleration field a and the Newtonian acceleration field aN. The Lagrangian may be constructed so that aN satisfies the usual Newton-Poisson equation, and is then used to find a via an additional algebraic but non-linear step, which is chosen to satisfy Milgrom's law. This is called the "quasi-linear formulation of MOND", or QUMOND, and is particularly useful for calculating the distribution of "phantom" dark matter that would be inferred from a Newtonian analysis of a given physical situation.
Both AQUAL and QUMOND propose changes to the gravitational part of the classical matter action, and hence interpret Milgrom's law as a modification of Newtonian gravity as opposed to Newton's second law. The alternative is to turn the kinetic term of the action into a functional depending on the trajectory of the particle. Such "modified inertia" theories, however, are difficult to use because they are time-nonlocal, require energy and momentum to be non-trivially redefined to be conserved, and have predictions that depend on the entirety of a particle's orbit.

Relativistic

In 2004, Jacob Bekenstein formulated TeVeS, the first complete relativistic hypothesis using MONDian behaviour. TeVeS is constructed from a local Lagrangian, and employs a unit vector field, a dynamical and non-dynamical scalar field, a free function and a non-Einsteinian metric in order to yield AQUAL in the non-relativistic limit. TeVeS has enjoyed some success in making contact with gravitational lensing and structure formation observations, but faces problems when confronted with data on the anisotropy of the cosmic microwave background, the lifetime of compact objects, and the relationship between the lensing and matter overdensity potentials.
Several alternative relativistic generalisations of MOND exist, including BIMOND and generalised Einstein-Aether theories. There is also a relativistic generalisation of MOND that assumes a Lorentz-type invariance as the physical basis of MOND phenomenology.

The external field effect

In Newtonian mechanics, an object's acceleration can be found as the vector sum of the acceleration due to each of the individual forces acting on it. This means that a subsystem can be decoupled from the larger system in which it is embedded simply by referring the motion of its constituent particles to their centre of mass; in other words, the influence of the larger system is irrelevant for the internal dynamics of the subsystem. Since Milgrom's law is non-linear in acceleration, MONDian subsystems cannot be decoupled from their environment in this way, and in certain situations this leads to behaviour with no Newtonian parallel. This is known as the "external field effect".
The external field effect is best described by classifying physical systems according to their relative values of ain, aex, and a0:
The external field effect implies a fundamental break with the strong equivalence principle. The effect was postulated by Milgrom in the first of his 1983 papers to explain why some open clusters were observed to have no mass discrepancy even though their internal accelerations were below a0. It has since come to be recognised as a crucial element of the MOND paradigm.
The dependence in MOND of the internal dynamics of a system on its external environment is strongly reminiscent of Mach's principle, and may hint towards a more fundamental structure underlying Milgrom's law. In this regard, Milgrom has commented:
It has been long suspected that local dynamics is strongly influenced by the universe at large, a-la Mach's principle, but MOND seems to be the first to supply concrete evidence for such a connection. This may turn out to be the most fundamental implication of MOND, beyond its implied modification of Newtonian dynamics and general relativity, and beyond the elimination of dark matter.

Indeed, the potential link between MONDian dynamics and the universe as a whole is augmented by the observation that the value of a0 is within an order of magnitude of cH0, where c is the speed of light and H0 is the Hubble constant. It is also close to the acceleration rate of the universe, and hence the cosmological constant. However, as yet no full hypothesis has been constructed which manifests these connections in a natural way.

Responses and criticism

Attempts to explain MOND phenomenology using dark matter

While acknowledging that Milgrom's law provides a succinct and accurate description of a range of galactic phenomena, many physicists reject the idea that classical dynamics itself needs to be modified and attempt instead to explain the law's success by reference to the behaviour of dark matter. Some effort has gone towards establishing the presence of a characteristic acceleration scale as a natural consequence of the behaviour of cold dark matter halos, although Milgrom has argued that such arguments explain only a small subset of MOND. An alternative proposal is to modify the properties of dark matter in order to induce the tight coupling between the baryonic and dark matter mass that the observations point to. Finally, some researchers suggest that explaining the empirical success of Milgrom's law requires a more radical break with conventional assumptions about the nature of dark matter. One idea is to make dark matter gravitationally polarisable by ordinary matter and have this polarisation enhance the gravitational attraction between baryons.

Outstanding problems for MOND

The most serious problem facing Milgrom's law is that it cannot completely eliminate the need for dark matter in all astrophysical systems: galaxy clusters show a residual mass discrepancy even when analysed using MOND. The fact that some form of unseen mass must exist in these systems detracts from the elegance of MOND as a solution to the missing mass problem, although the amount of extra mass required is a fifth that of a Newtonian analysis, and there is no requirement that the missing mass be non-baryonic. It has been speculated that 2 eV neutrinos could account for the cluster observations in MOND while preserving the hypothesis's successes at the galaxy scale. Indeed, analysis of sharp lensing data for the galaxy cluster Abell 1689 shows that MOND only becomes distinctive at Mpc distance from the center, so that Zwicky's conundrum remains , and 1.8 eV neutrinos are needed in clusters.
The 2006 observation of a pair of colliding galaxy clusters known as the "Bullet Cluster", poses a significant challenge for all theories proposing a modified gravity solution to the missing mass problem, including MOND. Astronomers measured the distribution of stellar and gas mass in the clusters using visible and X-ray light, respectively, and in addition mapped the inferred dark matter density using gravitational lensing. In MOND, one would expect the missing mass to be centred on the visible mass. In ΛCDM, on the other hand, one would expect the dark matter to be significantly offset from the visible mass because the halos of the two colliding clusters would pass through each other, whilst the cluster gas would interact and end up at the centre. An offset is clearly seen in the observations. It has been suggested, however, that MOND-based models may be able to generate such an offset in strongly non-spherically-symmetric systems, such as the Bullet Cluster.
Several other studies have noted observational difficulties with MOND. For example, it has been claimed that MOND offers a poor fit to the velocity dispersion profile of globular clusters and the temperature profile of galaxy clusters, that different values of a0 are required for agreement with different galaxies' rotation curves, and that MOND is naturally unsuited to forming the basis of a hypothesis of cosmology. Furthermore, many versions of MOND predict that the speed of light is different from the speed of gravity, but in 2017 the speed of gravitational waves was measured to be equal to the speed of light.
Besides these observational issues, MOND and its generalisations are plagued by theoretical difficulties. Several ad-hoc and inelegant additions to general relativity are required to create a hypothesis with a non-Newtonian non-relativistic limit, the plethora of different versions of the hypothesis offer diverging predictions in simple physical situations and thus make it difficult to test the framework conclusively, and some formulations have long suffered from poor compatibility with cherished physical principles such as conservation laws.

Proposals for testing MOND

Several observational and experimental tests have been proposed to help distinguish between MOND and dark matter-based models: