Minor actinide


The minor actinides are the actinide elements in used nuclear fuel other than uranium and plutonium, which are termed the major actinides. The minor actinides include neptunium, americium, curium, berkelium, californium, einsteinium, and fermium. The most important isotopes of these elements in spent nuclear fuel are neptunium-237, americium-241, americium-243, curium-242 through -248, and californium-249 through -252.
Plutonium and the minor actinides will be responsible for the bulk of the radiotoxicity and heat generation of used nuclear fuel in the medium term.
The plutonium from a power reactor tends to have a greater amount of plutonium-241 than the plutonium generated by the lower burnup operations designed to create weapons-grade plutonium. Because the reactor-grade plutonium contains so much 241Pu, the presence of americium-241 makes the plutonium less suitable for making a nuclear weapon. The ingrowth of americium in plutonium is one of the methods for identifying the origin of an unknown sample of plutonium and the time since it was last separated chemically from the americium.
Americium is commonly used in industry as both an alpha particle and as a low photon energy gamma radiation source. For instance it is used in many smoke detectors. Americium can be formed by neutron capture of 239Pu and 240Pu, forming 241Pu which then beta decays to 241Am. In general, as the energy of the neutrons increases, the ratio of the fission cross section to the neutron capture cross section changes in favour of fission. Hence, if MOX is used in a thermal reactor such as a boiling water reactor or pressurized water reactor then more americium can be expected in the used fuel than that from a fast neutron reactor.
Some of the minor actinides have been found in fallout from bomb tests. See Actinides in the environment for details.