Methanol economy


The methanol economy is a suggested future economy in which methanol and dimethyl ether replace fossil fuels as a means of energy storage, ground transportation fuel, and raw material for synthetic hydrocarbons and their products. It offers an alternative to the proposed hydrogen economy or ethanol economy.
In the 1990s, Nobel prize winner George A. Olah advocated a methanol economy; in 2006, he and two co-authors, G. K. Surya Prakash and Alain Goeppert, published a summary of the state of fossil fuel and alternative energy sources, including their availability and limitations, before suggesting a methanol economy.
Methanol can be produced from a wide variety of sources including still-abundant fossil fuels as well as agricultural products and municipal waste, wood and varied biomass. It can also be made from chemical recycling of carbon dioxide.

Uses

Fuel

Methanol is a fuel for heat engines and fuel cells. Due to its high octane rating it can be used directly as a fuel in flex-fuel cars using existing internal combustion engines. Methanol can also be burned in some other kinds of engine or to provide heat as other liquid fuels are used. Fuel cells, can use methanol either directly in Direct Methanol Fuel Cells or indirectly.

Feedstock

Methanol is already used today on a large scale to produce a variety of chemicals and products. Global methanol demand as a chemical feedstock reached around 42 million metric tonnes per year as of 2015. Through the methanol-to-gasoline process, it can be transformed into gasoline. Using the methanol-to-olefin process, methanol can also be converted to ethylene and propylene, the two chemicals produced in largest amounts by the petrochemical industry. These are important building blocks for the production of essential polymers and like other chemical intermediates are currently produced mainly from petroleum feedstock. Their production from methanol could therefore reduce our dependency on petroleum. It would also make it possible to continue producing these chemicals when fossil fuels reserves are depleted.

Production

Today most methanol is produced from methane through syngas. Trinidad and Tobago is currently the world's largest methanol exporter, with exports mainly to the United States. The natural gas that serves as feedstock for the production of methanol comes from the same sources as other uses. Unconventional gas resources such as coalbed methane, tight sand gas and eventually the very large methane hydrate resources present under the continental shelves of the seas and Siberian and Canadian tundra could also be used to provide the necessary gas.
The conventional route to methanol from methane passes through syngas generation by steam reforming combined with partial oxidation. New and more efficient ways to convert methane into methanol are also being developed. These include:
All these synthetic routes emit the greenhouse gas carbon dioxide CO2. To mitigate this, methanol can be made through ways minimizing the emission of CO2. One solution is to produce it from syngas obtained by biomass gasification. For this purpose any biomass can be used including wood, wood wastes, grass, agricultural crops and their by-products, animal waste, aquatic plants and municipal waste. There is no need to use food crops as in the case of ethanol from corn, sugar cane and wheat.
Methanol can be synthesized from carbon and hydrogen from any source, including still available fossil fuels and biomass. CO2 emitted from fossil fuel burning power plants and other industries and eventually even the CO2 contained in the air, can be a source of carbon. It can also be made from chemical recycling of carbon dioxide, which Carbon Recycling International has demonstrated with its first commercial scale plant. Initially the major source will be the CO2 rich flue gases of fossil-fuel-burning power plants or exhaust from cement and other factories. In the longer range however, considering diminishing fossil fuel resources and the effect of their utilization on earth's atmosphere, even the low concentration of atmospheric CO2 itself could be captured and recycled via methanol, thus supplementing nature’s own photosynthetic cycle. Efficient new absorbents to capture atmospheric CO2 are being developed, mimicking plants' ability. Chemical recycling of CO2 to new fuels and materials could thus become feasible, making them renewable on the human timescale.
Methanol can also be produced from CO2 by catalytic hydrogenation of CO2 with H2 where the hydrogen has been obtained from water electrolysis. This is the process used by Carbon Recycling International of Iceland. Methanol may also be produced through CO2 electrochemical reduction, if electrical power is available. The energy needed for these reactions in order to be carbon neutral would come from renewable energy sources such as wind, hydroelectricity and solar as well as nuclear power. In effect, all of them allow free energy to be stored in easily transportable methanol, which is made immediately from hydrogen and carbon dioxide, rather than attempting to store energy in free hydrogen.
or with electric energy
The necessary CO2 would be captured from fossil fuel burning power plants and other industrial flue gases including cement factories. With diminishing fossil fuel resources and therefore CO2 emissions, the CO2 content in the air could also be used. Considering the low concentration of CO2 in air improved and economically viable technologies to absorb CO2 will have to be developed. For this reason, extraction of CO2 from water could be more feasible due to its higher concentrations in dissolved form. This would allow the chemical recycling of CO2, thus mimicking nature’s photosynthesis.

Advantages

In the process of photosynthesis, green plants use the energy of sunlight to split water into free oxygen and free hydrogen. Rather than attempt to store the hydrogen, plants immediately capture carbon dioxide from the air to allow the hydrogen to reduce it to storable fuels such as hydrocarbons and polyalcohols. In the methanol economy, any process which similarly produces free hydrogen, proposes to immediately use it "captively" to reduce carbon dioxide into methanol, which, like plant products from photosynthesis, has great advantages in storage and transport over free hydrogen itself.
Methanol is a liquid under normal conditions, allowing it to be stored, transported and dispensed easily, much like gasoline and diesel fuel. It can also be readily transformed by dehydration into dimethyl ether, a diesel fuel substitute with a cetane number of 55.
Methanol is water-soluble: An accidental release of methanol in the environment would cause much less damage than a comparable gasoline or crude oil spill. Unlike these fuels, methanol is biodegradable and totally soluble in water, and would be rapidly diluted to a concentration low enough for microorganism to start biodegradation. This effect is already exploited in water treatment plants, where methanol is already used for denitrification and as a nutrient for bacteria. Accidental release causing groundwater pollution has not been thoroughly studied yet, though it is believed that it might undergo relatively rapid.

Comparison with hydrogen

Methanol economy advantages compared to a hydrogen economy: