Mars Global Surveyor
Mars Global Surveyor was an American robotic spacecraft developed by NASA's Jet Propulsion Laboratory and launched November 1996. Mars Global Surveyor was a global mapping mission that examined the entire planet, from the ionosphere down through the atmosphere to the surface. As part of the larger Mars Exploration Program, Mars Global Surveyor performed monitoring relay for sister orbiters during aerobraking, and it helped Mars rovers and lander missions by identifying potential landing sites and relaying surface telemetry.
It completed its primary mission in January 2001 and was in its third extended mission phase when, on 2 November 2006, the spacecraft failed to respond to messages and commands. A faint signal was detected three days later which indicated that it had gone into safe mode. Attempts to recontact the spacecraft and resolve the problem failed, and NASA officially ended the mission in January 2007.
Objectives
Mars Global Surveyor achieved the following science objectives during its primary mission:- Characterize the surface features and geological processes on Mars.
- Determine the composition, distribution and physical properties of surface minerals, rocks and ice.
- Determine the global topography, planet shape, and gravitational field.
- Establish the nature of the magnetic field and map the crustal remnant field.
- Monitor global weather and the thermal structure of the atmosphere.
- Study interactions between Mars' surface and the atmosphere by monitoring surface features, polar caps that expand and recede, the polar energy balance, and dust and clouds as they migrate over a seasonal cycle.
- Continued weather monitoring to form a continuous set of observations with NASA's Mars Reconnaissance Orbiter, which reached Mars in March 2006.
- Imaging of possible landing sites for the 2007 Phoenix spacecraft, and the 2011 Curiosity rover.
- Observation and analysis of key sites of scientific interest, such as sedimentary-rock outcrop sites.
- Continued monitoring of changes on the surface due to wind and ice.
Specifications
Scientific instruments
Five scientific instruments flew aboard Mars Global Surveyor:- The Mars Orbiter Camera operated by Malin Space Science Systems
- The Mars Orbiter Laser Altimeter
- The Thermal Emission Spectrometer
- A magnetometer and electron reflectometer
- The Ultrastable Oscillator for doppler measurements
- The Mars Relay – Signal receiver
The Mars Relay antenna supported the Mars Exploration Rovers for data relay back to Earth in conjunction with the Mars Orbiter Camera's 12 MB memory buffer. In total, more than 7.6 gigabits of data were transferred this way.
Launch and orbit insertion
The Surveyor spacecraft was launched from the Cape Canaveral Air Station in Florida on 7 November 1996 aboard a Delta II rocket. The spacecraft traveled nearly 750 million kilometers over the course of a 300-day cruise to reach Mars on 11 September 1997.Upon reaching Mars, Surveyor fired its main rocket engine for the 22-minute Mars orbit insertion burn. This maneuver slowed the spacecraft and allowed the planet's gravity to capture it into orbit. Initially, Surveyor entered a highly elliptical orbit that took 45 hours to complete. The orbit had a periapsis of above the northern hemisphere, and an apoapsis of above the southern hemisphere.
Aerobraking
After orbital insertion, Surveyor performed a series of orbit changes to lower the periapsis of its orbit into the upper fringes of the Martian atmosphere at an altitude of about. During every atmospheric pass, the spacecraft slowed down by a slight amount because of atmospheric resistance. The density of the Martian atmosphere at such altitudes is comparatively low, allowing this procedure to be performed without damage to the spacecraft. This slowing caused the spacecraft to lose altitude on its next pass through the orbit's apoapsis. Surveyor had planned to use this aerobraking technique over a period of four months to lower the high point of its orbit from to altitudes near.On 11 October, the flight team performed a maneuver to raise the periapsis out of the atmosphere. This suspension of aerobraking was performed because air pressure from the atmosphere caused one of Surveyor's two solar panels to bend backward by a slight amount. The panel in question was slightly damaged shortly after launch in November 1996. Aerobraking was resumed on 7 November after flight team members concluded that aerobraking was safe, provided that it occurs at a more gentle pace than proposed by the original mission plan.
Under the new mission plan, aerobraking occurred with the low point of the orbit at an average altitude of, as opposed to the original altitude of. This slightly higher altitude resulted in a decrease of 66 percent in terms of air resistance pressure experienced by the spacecraft. During these six months, aerobraking reduced the orbit period to between 12 and 6 hours.
From May to November 1998, aerobraking was temporarily suspended to allow the orbit to drift into the proper position with respect to the Sun. Without this hiatus, 'Surveyor' would complete aerobraking with its orbit in the wrong solar orientation. In order to maximize the efficiency of the mission, these six months were devoted to collecting as much science data as possible. Data was collected between two and four times per day, at the low point of each orbit.
Finally, from November 1998 to March 1999, aerobraking continued and shrank the high point of the orbit down to. At this altitude, Surveyor circled Mars once every two hours. Aerobraking was scheduled to terminate at the same time the orbit drifted into its proper position with respect to the Sun. In the desired orientation for mapping operations, the spacecraft always crossed the day-side equator at 14:00 moving from south to north. This geometry was selected to enhance the total quality of the science return.
Mission results
Mapping
The spacecraft circled Mars once every 117.65 minutes at an average altitude of. It is in a near polar orbit which is almost perfectly circular, moving from being over the south pole to being over the north pole in just under an hour. The altitude was chosen to make the orbit Sun-synchronous, so that all images that were taken by the spacecraft of the same surface features on different dates were taken under identical lighting conditions. After each orbit, the spacecraft viewed the planet 28.62° to the west because Mars had rotated underneath it. In effect, it was always 14:00 for Mars Global Surveyor as it moved from one time zone to the next exactly as fast as the Sun. After seven sols and 88 orbits, the spacecraft would approximately retrace its previous path, with an offset of 59 km to the east. This ensured eventual full coverage of the entire surface.In its extended mission, MGS did much more than study the planet directly beneath it. It commonly performed rolls and pitches to acquire images off its nadir track. The roll maneuvers, called ROTOs, rolled the spacecraft left or right from its ground track to shoot images as much as 30° from nadir. It was possible for a pitch maneuver to be added to compensate for the relative motion between the spacecraft and the planet. This was called a CPROTO, and allowed for some very high resolution imaging by the onboard MOC.
In addition to this, MGS could shoot pictures of other orbiting bodies, such as other spacecraft and the moons of Mars. In 1998 it imaged what was later called the Phobos monolith, found in MOC Image 55103.
After analyzing hundreds of high-resolution pictures of the Martian surface taken by the orbiting Mars Surveyor spacecraft, a team of researchers found that weathering and winds on the planet create landforms, especially sand dunes, remarkably similar to those in some deserts on Earth.
Results from the Mars Global Surveyor primary mission were published in the Journal of Geophysical Research by M. Malin and K. Edgett. Some of these discoveries are:
- The planet was found to have a layered crust to depths of 10 km or more. To produce the layers, large amounts of material had to be weathered, transported and deposited.
- The northern hemisphere is probably just as cratered as the southern hemisphere, but the craters are mostly buried.
- Many features, like impact craters, were buried, then recently exhumed.
- Hundreds of gullies were discovered that were formed from liquid water, possible in recent times.
- Large areas of Mars are covered by a mantle that coats all but the very steepest slopes. The mantle is sometimes smooth, sometimes pitted. Some believe the pits are due to the escape of water through sublimation of buried ice.
- Some areas are covered by hematite-rich material. The hematite could have been put in place by liquid water in the past.
- Dark streaks were found to be caused by giant dust devils. Dust devil tracks were observed to frequently change; some changed in just one month.
- The south pole's residual cap was observed to look like Swiss cheese. The holes are generally a few meters deep. The holes get bigger each year, so this region or hemisphere may be warming. Claims that this represents a global trend, however, are cherry-picking regional data versus the planetary dataset, and MOC results versus TES and radio science.
- The Thermal Emission Spectrometer observes in infrared, for atmospheric studies and mineralogy. TES found that Mars' planetary climate has cooled since Viking, and just about all of the surface of Mars is covered with volcanic rock.
- Hundreds of house-sized boulders were found in some areas. This indicates that some materials are strong enough to hold together, even when moving downslope. Most of the boulders appeared in volcanic regions so they were probably from weathered from lava flows.
- Thousands of dark slope streaks were observed. Most scientists believe they result from the avalanching of dust. However, some researchers think that water may be involved.
The Lense–Thirring test
Discovery of water ice on Mars
On 6 December 2006 NASA released photos of two craters in Terra Sirenum and Centauri Montes which appear to show the presence of flowing water on Mars at some point between 1999 and 2001. The pictures were produced by Mars Global Surveyor and are quite possibly the spacecraft's final contribution to our knowledge of Mars and the question of whether water exists on the planet.Hundreds of gullies were discovered that were formed from liquid water, possible in recent times. These gullies occur on steep slopes and mostly in certain bands of latitude.
A few channels on Mars displayed inner channels that suggest sustained fluid flows. The most well-known is the one in Nanedi Valles. Another was found in Nirgal Vallis.
Mission timeline
- 7 November 1996: Launch from Cape Canaveral.
- 11 September 1997: Arrival at Mars, began orbit insertion.
- 1 April 1999: Primary mapping phase began.
- 1 February 2001: First extended mission phase began.
- 1 February 2002: Second extended mission phase began.
- 1 January 2003: Relay mission began.
- 30 March 2004: Surveyor photographed the Mars Exploration Rover Spirit along with its wheel tracks showing its first 85 sols of travel.
- 1 December 2004: Science and Support mission began.
- April 2005: MGS became the first spacecraft to photograph another spacecraft in orbit around a planet other than Earth when it captured two images of the Mars Odyssey spacecraft and one image of the Mars Express spacecraft.
- 1 October 2006: Extended mission phase began for another two years.
- 2 November 2006: Spacecraft suffers an error while attempting to reorient a solar panel and communication was lost.
- 5 November 2006: Weak signals were detected, indicating the spacecraft was awaiting instructions. The signal cut out later that day.
- 21 November 2006: NASA announces the spacecraft has likely finished its operating career.
- 6 December 2006: NASA releases imagery taken by MGS of a newly found gully deposit, suggesting that water still flows on Mars.
- 13 April 2007: NASA releases its Preliminary Report on the cause of MGS' loss of contact.
Loss of contact
On 20 November 2006, the Mars Reconnaissance Orbiter spacecraft attempted to image Mars Global Surveyor to verify the orientation of the spacecraft. The effort was unsuccessful.
On 21 and 22 November 2006, Mars Global Surveyor failed to relay communications to the Opportunity rover on the surface of Mars. In response to this complication, Mars Exploration Program manager Fuk Li stated, "Realistically, we have run through the most likely possibilities for re-establishing communication, and we are facing the likelihood that the amazing flow of scientific observations from Mars Global Surveyor is over."
On 13 April 2007, NASA announced the loss of the spacecraft was caused by a flaw in a parameter update to the spacecraft's system software. The spacecraft was designed to hold two identical copies of the system software for redundancy and error checking. Subsequent updates to the software encountered a human error when two independent operators updated separate copies with differing parameters. This was followed by a corrective update that unknowingly included a memory fault which resulted in the loss of the spacecraft.
Originally, the spacecraft was intended to observe Mars for 1 Martian year. However, based on the vast amount of valuable science data returned, NASA extended the mission three times. The MGS remains in a stable near-polar circular orbit at about 450 km altitude, and will crash onto the surface of the planet in about 2047.