Light-emitting electrochemical cell


A light-emitting electrochemical cell is a solid-state device that generates light from an electric current. LECs are usually composed of two metal electrodes connected by an organic semiconductor containing mobile ions. Aside from the mobile ions, their structure is very similar to that of an organic light-emitting diode.
LECs have most of the advantages of OLEDs, as well as additional ones:
There are two distinct types of LECs, those based on inorganic transition metal complexes or light emitting polymers. iTMC devices are often more efficient than their LEP based counterparts due to the emission mechanism being phosphorescent rather than fluorescent.
While electroluminescence had been seen previously in similar devices, the invention of the polymer LEC is attributed to Pei et al. Since then, numerous research groups and a few companies have worked on improving and commercializing the devices.
In 2012 the first inherently stretchable LEC using an elastomeric emissive material was reported. Dispersing an ionic transition metal complex into an elastomeric matrix enables the fabrication of intrinsically stretchable light-emitting devices that possess large emission areas and tolerate linear strains up to 27% and repetitive cycles of 15% strain. This work demonstrates the suitability of this approach to new applications in conformable lighting that require uniform, diffuse light emission over large areas.
In 2012 fabrication of organic light-emitting electrochemical cells using a roll-to-roll compatible process under ambient conditions was reported.
In 2017, a new design approach developed by a team of Swedish researchers promised to deliver substantially higher efficiency: 99.2 cd A−1 at a bright luminance of 1910 cd m−2.