Layered intrusion
A layered intrusion is a large sill-like body of igneous rock which exhibits vertical layering or differences in composition and texture. These intrusions can be many kilometres in area covering from around to over and several hundred metres to over in thickness. While most layered intrusions are Archean to Proterozoic in age, they may be any age such as the Cenozoic Skaergaard intrusion of east Greenland or the Rum layered intrusion in Scotland. Although most are ultramafic to mafic in composition, the Ilimaussaq intrusive complex of Greenland is an alkalic intrusion.
Layered intrusions are typically found in ancient cratons and are rare but worldwide in distribution. The intrusive complexes exhibit evidence of fractional crystallization and crystal segregation by settling or floating of minerals from a melt.
Ideally, the stratigraphic sequence of an ultramafic-mafic intrusive complex consists of ultramafic peridotites and pyroxenites with associated chromitite layers toward the base with more mafic norites, gabbros and anorthosites in the upper layers. Some include diorite, and granophyre near the top of the bodies. Orebodies of platinum group elements, chromite, magnetite, and ilmenite are often associated with these rare intrusions.
Intrusive behaviour and setting
Mafic-ultramafic layered intrusions occur at all levels within the crust, from depths in excess of to depths of as little as. The depth at which an intrusion is formed is dependent on several factors:- Density of the melt. Magmas with high magnesium and iron contents are denser and are therefore less likely to be able to reach the surface.
- Interfaces within the crust. Typically, a horizontal detachment zone, a dense, impermeable layer or even a lithological interface may provide a horizontal plane of weakness which the ascending magma will exploit, forming a sill or lopolith.
- Temperature and viscosity. As an ascending magma rises and cools, it becomes thicker and more viscous. This then restricts the magma from rising further because more energy is required to push it upwards. Conversely, thicker magma is also more efficient at forcing apart the wall rocks, creating volume which the magma may fill.
Intrusive mechanisms
Plume magmatism
The plume magmatism theory is based on observations that most large igneous provinces include both hypabyssal and surficial manifestations of voluminous mafic magmatism within the same temporal period. For instance, in most Archaean cratons, greenstone belts correlate with voluminous dike injections as well as usually some form of larger intrusive episodes into the crust. This is particularly true of a series of ultramafic-mafic layered intrusions in the Yilgarn Craton of ~2.8 Ga and associated komatiite volcanism and widespread tholeiitic volcanism.Plume magmatism is an effective mechanism for explaining the large volumes of magmatism required to inflate an intrusion to several kilometres thickness. Plumes also tend to create warping of the crust, weaken it thermally so that it is easier to intrude magma and create space to host the intrusions.
Geochemical evidence supports the hypothesis that some intrusions result from plume magmatism. In particular, the Noril'sk-Talnakh intrusions are considered to be created by plume magmatism, and other large intrusions have been suggested as created by mantle plumes. However, the story is not so simple, because most ultramafic-mafic layered intrusions also correlate with craton margins, perhaps because they are exhumed more efficiently in cratonic margins because of faulting and subsequent orogeny.
Rift magmatism
Some large layered complexes are not related to mantle plumes, or example, the Skaergaard intrusion in Greenland. Here, the large magma volumes which are created by mid-ocean ridge spreading allow the accumulation of large volumes of cumulate rocks. The problem of creating space for such intrusions is easily explained by the extensional tectonics in operation; extensional or listric faults operating at depth can provide a triangular space for keel-shaped or boat-shaped intrusions such as the Great Dyke of Zimbabwe, or the Narndee-Windimurra Complex of Western Australia.It is also possible that what we see as a cratonic margin today were created by the action of a plume event initiating a continental rifting episode; therefore the tectonic setting of most large layered complexes must be carefully weighed in terms of geochemistry and the nature of the host sequence, and in some cases a mixed mechanism cause is possible.
Causes of layering
The causes of layering in large ultramafic intrusions include convection, thermal diffusion, settling of phenocrysts, assimilation of wall rocks and fractional crystallization.The primary mechanism for forming cumulate layers is, of course, the accumulation of layers of mineral crystals on the floor or roof of the intrusion. Rarely, plagioclase is found in cumulate layers at the top of intrusions, having floated to the top of a much denser magma. Here it can form anorthosite layers.
Accumulation occurs as crystals are formed by fractional crystallisation and, if they are dense enough, precipitate out from the magma. In large, hot magma chambers having vigorous convection and settling, pseudo-sedimentary structures such as flow banding, graded bedding, scour channels, and foreset beds, can be created. The Skaergaard intrusion in Greenland is a prime example of these quasi-sedimentary structures.
Whilst the dominant process of layering is fractional crystallisation, layering can also result in a magma body through assimilation of the wall rocks. This will tend to increase the silica content of the melt, which will eventually prompt a mineral to reach the liquidus for that magma composition. Assimilation of wall rocks takes considerable thermal energy, so this process goes hand in hand with the natural cooling of the magma body. Often, assimilation can only be proven by detailed geochemistry.
Often, cumulate layers are polyminerallic, forming gabbro, norite and other rock types. The terminology of cumulate rocks, however, is usually used to describe the individual layers as, for instance, pyroxene-plagioclase cumulates.
Monomineralic cumulate layers are common. These may be economically important, for instance magnetite and ilmenite layers are known to form titanium, vanadium deposits such as at Windimurra intrusion and hard-rock iron deposits. Chromite layers are associated with platinum-palladium group element deposits, the most famous of these being the Merensky Reef in the Bushveld Igneous Complex.
The central section or upper sections of many large ultramafic intrusions are poorly layered, massive gabbro. This is because as the magma differentiates it reaches a composition favouring crystallisation of only two or three minerals; the magma may also have cooled by this stage sufficiently for the increasing viscosity of the magma to halt effective convection, or convection may stop or break up into inefficient small cells because the revervoir becomes too thin and flat.
Crystals accumulation and layering can expel interstitial melt that migrates through the cumulate pile, reacting with it.
Examples
- Bushveld igneous complex, South Africa
- Dufek intrusion, Antarctica
- Duluth Complex, northeastern Minnesota, United States
- Giles complex intrusions central Australia
- Great Dyke, Zimbabwe
- Kanichee layered intrusive complex, Ontario, Canada
- Kiglapait intrusion, Labrador, Canada
- Lac des Îles igneous complex, Ontario, Canada
- Muskox intrusion, Northwest Territories, Canada
- Rum intrusion, Scotland
- Skaergaard intrusion of east Greenland
- Stillwater igneous complex, southwestern Montana, United States
- Windimurra intrusion, West Australia
- Chimalpahad layered complex, Khammam, Telangana India