Laser weapon


A laser weapon is a directed-energy weapon based on lasers. After decades of R&D, as of 2020 directed-energy weapons including lasers are still at the experimental stage and it remains to be seen if or when they will be deployed as practical, high-performance military weapons. Atmospheric thermal blooming has been a major problem, still mostly unsolved and worsened if there is fog, smoke, dust, rain, snow, smog, foam, or purposely dispersed obscurant chemicals in the air. Essentially, laser generates a beam of light which needs clear air, or a vacuum to work without thermal blooming. Laser and other directed-energy weapons have been a staple in science fiction since their inception however.
Many types of laser can potentially be used as incapacitating weapons, through their ability to produce temporary or permanent vision loss when aimed at the eyes. The degree, character, and duration of vision impairment caused by eye exposure to laser light varies with the power of the laser, the wavelength, the collimation of the beam, the exact orientation of the beam, and the duration of exposure. Lasers of even a fraction of a watt in power can produce immediate, permanent vision loss under certain conditions, making such lasers potential non-lethal but incapacitating weapons. The extreme handicap that laser-induced blindness represents makes the use of lasers even as non-lethal weapons morally controversial, and weapons designed to cause permanent blindness have been banned by the Protocol on Blinding Laser Weapons.
Weapons designed to cause temporary blindness, known as dazzlers, are used by military and sometimes law enforcement organizations. Incidents of pilots being exposed to lasers while flying have prompted aviation authorities to implement special procedures to deal with such hazards. See Lasers and aviation safety for more on this topic.
Laser weapons capable of directly damaging or destroying a target in combat are still in the experimental stage. The general idea of laser-beam weaponry is to hit a target with a train of brief pulses of light. The rapid evaporation and expansion of the surface causes shockwaves that damage the target. The power needed to project a high-powered laser beam of this kind is beyond the limit of current mobile power technology, thus favoring chemically powered gas dynamic lasers. Example experimental systems included MIRACL and the Tactical High Energy Laser, which are now discontinued.
The United States Navy has tested the very short range, 30-kW Laser Weapon System or LaWS to be used against targets like small UAVs, rocket-propelled grenades, and visible motorboat or helicopter engines. It has been defined as "six welding lasers strapped together." A 60 kW system, HELIOS, is being developed as of 2020

Overview

Laser-based directed-energy weapons are being developed, such as Boeing's Airborne Laser which was constructed inside a Boeing 747. Designated the YAL-1, it was intended to kill short- and intermediate-range ballistic missiles in their boost phase.
Another example of direct use of a laser as a defensive weapon was researched for the Strategic Defense Initiative, and its successor programs. This project would use ground-based or space-based laser systems to destroy incoming intercontinental ballistic missiles. The practical problems of using and aiming these systems were many; particularly the problem of destroying ICBMs at the most opportune moment, the boost phase just after launch. This would involve directing a laser through a large distance in the atmosphere, which, due to optical scattering and refraction, would bend and distort the laser beam, complicating the aiming of the laser and reducing its efficiency.
Another idea from the SDI project was the nuclear-pumped X-ray laser. This was essentially an orbiting atomic bomb, surrounded by laser media in the form of glass rods; when the bomb exploded, the rods would be bombarded with highly-energetic gamma-ray photons, causing spontaneous and stimulated emission of X-ray photons in the atoms making up the rods. This would lead to optical amplification of the X-ray photons, producing an X-ray laser beam that would be minimally affected by atmospheric distortion and capable of destroying ICBMs in flight. The X-ray laser would be a strictly one-shot device, destroying itself on activation. Some initial tests of this concept were performed with underground nuclear testing; however, the results were not encouraging. Research into this approach to missile defense was discontinued after the SDI program was canceled.

Electrolaser

An electrolaser first ionizes its target path, and then sends a powerful electric current down the conducting track of ionized plasma, somewhat like lightning. It functions as a giant, high-energy, long-distance version of the Taser or stun gun.

Pulsed energy projectile

Pulsed Energy Projectile or PEP systems emit an infrared laser pulse which creates rapidly expanding plasma at the target. The resulting sound, shock and electromagnetic waves stun the target and cause pain and temporary paralysis. The weapon is under development and is intended as a non-lethal weapon in crowd control though it can also be used as a lethal weapon.

Dazzler

A dazzler is a directed-energy weapon intended to temporarily blind or disorient its target with intense directed radiation. Targets can include sensors or human vision. Dazzlers emit infrared or invisible light against various electronic sensors, and visible light against humans, when they are intended to cause no long-term damage to eyes. The emitters are usually lasers, making what is termed a laser dazzler. Most of the contemporary systems are man-portable, and operate in either the red or green areas of the electromagnetic spectrum.
Initially developed for military use, non-military products are becoming available for use in law enforcement and security.
The personnel halting and stimulation response rifle is a prototype non-lethal laser dazzler developed by the Air Force Research Laboratory's Directed Energy Directorate, U.S. Department of Defense. Its purpose is to temporarily disorient and blind a target. Blinding laser weapons have been tested in the past, but were banned under the 1995 United Nations Protocol on Blinding Laser Weapons, which the United States acceded to on 21 January 2009. The PHASR rifle, a low-intensity laser, is not prohibited under this regulation, as the blinding effect is intended to be temporary. It also uses a two-wavelength laser. The PHASR was tested at Kirtland Air Force Base, part of the Air Force Research Laboratory Directed Energy Directorate in New Mexico.
Leading Western companies in the development of laser weapons have been Boeing, Northrop Grumman, Lockheed Martin, Netherlands Organisation for Applied Scientific Research, Rheinmetall and MBDA.
List:
laser as an intended anti-satellite weapon.
Most of these projects have been canceled, discontinued, never went beyond the prototype or experimental stage, or are only used in niche applications like dazzling, blinding, mine clearance or close defense against small, unprotected targets. Effective, high performance laser weapons seem to be difficult to achieve using current or near-future technology.

Problems

Laser beams begin to cause plasma breakdown in the atmosphere at energy densities of around one megajoule per cubic centimeter. This effect, called "blooming," causes the laser to defocus and disperse energy into the surrounding air. Blooming can be more severe if there is fog, smoke, dust, rain, snow, smog, or foam in the air.
Techniques that may reduce these effects include:
Essentially, laser generates a beam of light which will be delayed or stopped by any opaque medium and perturbed by any translucent or less than perfectly transparent medium just like any other type of light. A simple, dense smoke screen can and will often block a laser beam. Infrared or multi-spectrum smoke grenades or generators will also disturb or block infrared laser beams. Any opaque case, cowling, bodywork, fuselage, hull, wall, shield or armor will absorb at least the "first impact" of a laser weapon, so the beam must be sustained to achieve penetration.
The Chinese People's Liberation Army has invested in the development of specialized coatings that can deflect beams fired by U.S. military lasers. Laser light can be deflected, reflected, or absorbed by manipulating physical and chemical properties of materials. Artificial coatings can counter certain specific types of lasers, but a different type of laser may match the coating's absorption spectrum enough to transfer damaging amounts of energy. The coatings are made of several different substances, including low-cost metals, rare earths, carbon fiber, silver, and diamonds that have been processed to fine sheens and tailored against specific laser weapons. China is developing anti-laser defenses because protection against them is considered far cheaper than creating competing laser weapons.
Dielectric mirrors, inexpensive ablative coatings, thermal transport delay, and obscurants are also being studied as countermeasures. In not a few operational situations, even simple, passive countermeasures like rapid rotation, higher acceleration, or agile maneuvering during the terminal attack phase can defeat or help to defeat non-highly pulsed, high-energy laser weapons.

In popular culture

envisaged particle beam weapons in his 1955 novel Earthlight, in which energy would be delivered by high-velocity beams of matter. After the invention of the laser in 1960, it briefly became the death ray of choice for science fiction writers. By the late 1960s and 1970s, as the laser's limits as a weapon became evident, the ray gun began to be replaced by similar weapons with names that better reflected the destructive capabilities of the device
In the Warhammer 40,000 franchise, a faction known as the Imperial Guard has a "lasgun", presented as a cheap, easy to build and reliable technology, as their main weapon and larger cannon versions being mounted onto tanks or carried by transhuman like the so-called Space Marines. The Eldar has a special unit called the Swooping Hawks equipped with a "lasblaster". In the Command & Conquer video game series, various factions make extensive use of laser and particle beam technology.