LAN Manager
LAN Manager was a network operating system available from multiple vendors and developed by Microsoft in cooperation with 3Com Corporation. It was designed to succeed 3Com's 3+Share network server software which ran atop a heavily modified version of MS-DOS.
History
LAN Manager was based on the OS/2 operating system co-developed by IBM and Microsoft. It originally used the Server Message Block protocol atop either the NetBIOS Frames protocol or a specialized version of the Xerox Network Systems protocol. These legacy protocols had been inherited from previous products such as MS-Net for MS-DOS, Xenix-NET for MS-Xenix, and the afore-mentioned 3+Share. A version of LAN Manager for Unix-based systems called LAN Manager/X was also available.In 1990, Microsoft announced LAN Manager 2.0 with a host of improvements, including support for TCP/IP as a transport protocol. The last version LAN Manager, 2.2, which included an MS-OS/2 1.31 base operating system, remained Microsoft's strategic server system until the release of Windows NT Advanced Server in 1993.
Versions
- 1987 – MS LAN Manager 1.0
- 1989 – MS LAN Manager 1.1
- 1991 – MS LAN Manager 2.0
- 1992 – MS LAN Manager 2.1
- 1992 – MS LAN Manager 2.1a
- 1993 – MS LAN Manager 2.2
- 1994 – MS LAN Manager 2.2a
- 3Com Corporation 3+Open
- HP LAN Manager/X
- IBM LAN Server
- Tapestry Torus
- The Santa Cruz Operation
Cryptanalysis
The major weaknesses of LAN Manager authentication protocol are:
- Passwords are not case sensitive. All passwords are converted into uppercase before generating the hash value. Hence it takes password, PassWord, PaSsWoRd, PASSword and other similar combinations same as PASSWORD converting all characters to uppercase. Password characters are also limited to a subset of 95 characters in the 256-byte ASCII character set.
- Password length is limited to maximum of 14 characters
- A 14-character password is broken into 7+7 characters and the hash is calculated for the two halves separately. This way of calculating the hash makes it exponentially easier to crack, as the attacker needs to brute force 7 characters twice instead of 14 characters. This makes the effective strength of a 14-characters password equal to only, or twice that of a 7-character password, which is significantly less complex than the theoretical strength of a 14-character password.
- If the password is 7 characters or less, then the second half of hash will always produce same constant value. Therefore, if the length of password is less than or equal to 7 characters, then a password length of 7 characters or less can be identified visibly without using tools.
- The hash value is sent to network servers without salting, making it susceptible to man-in-the-middle attacks such as replay the hash, and also allowing rainbow tables to be constructed.
LM hash details
Algorithm
The LM hash is computed as follows:- The user's password is restricted to a maximum of fourteen characters.
- The user’s password is converted to uppercase.
- The user's password is encoded in the System OEM code page.
- This password is null-padded to 14 bytes.
- The “fixed-length” password is split into two 7-byte halves.
- These values are used to create two DES keys, one from each 7-byte half, by converting the seven bytes into a bit stream with the most significant bit first, and inserting a null bit after every seven bits. This generates the 64 bits needed for a DES key.
- Each of the two keys is used to DES-encrypt the constant ASCII string “
KGS!@#$%
”, resulting in two 8-byte ciphertext values. The DES CipherMode should be set to ECB, and PaddingMode should be set toNONE
. - These two ciphertext values are concatenated to form a 16-byte value, which is the LM hash.
Security weaknesses
Secondly, passwords longer than 7 characters are divided into two pieces and each piece is hashed separately; this weakness allows each half of the password to be attacked separately at exponentially lower cost than the whole, as only different 7-character password pieces are possible with the same character set. By mounting a brute-force attack on each half separately, modern desktop machines can crack alphanumeric LM hashes in a few hours. In addition, all lower case letters in the password are changed to upper case before the password is hashed, which further reduces the key space for each half to.
The LM hash also does not use cryptographic salt, a standard technique to prevent pre-computed dictionary attacks. A time–memory tradeoff cryptanalysis attack, such as a rainbow table, is therefore feasible. In addition, any password that is shorter than 8 characters will result in the hashing of 7 null bytes, yielding the constant value of
0xAAD3B435B51404EE
, hence making it easy to identify short passwords on sight. In 2003, Ophcrack, an implementation of the rainbow table technique, was published. It specifically targets the weaknesses of LM encryption, and includes pre-computed data sufficient to crack virtually all alphanumeric LM hashes in a few seconds. Many cracking tools, e.g. RainbowCrack, L0phtCrack and Cain, now incorporate similar attacks and make cracking of LM hashes fast and trivial.A final weakness of LM hashes lies in their implementation — since they change only when a user changes their password, they can be used to carry out a pass the hash attack.
Workarounds
To address the security weaknesses inherent in LM encryption and authentication schemes, Microsoft introduced the NTLMv1 protocol in 1993 with Windows NT 3.1. For hashing, NTLM uses Unicode support, replacingLMhash=DESeach
by NThash=MD4
, which does not require any padding or truncating that would simplify the key. On the negative side, the same DES algorithm was used with only 56-bit encryption for the subsequent authentication steps, and there is still no salting. Furthermore, Windows machines were for many years configured by default to send and accept responses derived from both the LM hash and the NTLM hash, so the use of the NTLM hash provided no additional security while the weaker hash was still present. It also took time for artificial restrictions on password length in management tools such as User Manager to be lifted.While LAN Manager is considered obsolete and current Windows operating systems use the stronger NTLMv2 or Kerberos authentication methods, Windows systems before Windows Vista/Windows Server 2008 enabled the LAN Manager hash by default for backward compatibility with legacy LAN Manager and Windows ME or earlier clients, or legacy NetBIOS-enabled applications. It has for many years been considered good security practice to disable the compromised LM and NTLMv1 authentication protocols where they aren't needed.
Starting with Windows Vista and Windows Server 2008, Microsoft disabled the LM hash by default; the feature can be enabled for local accounts via a security policy setting, and for Active Directory accounts by applying the same setting via domain Group Policy. The same method can be used to turn the feature off in Windows 2000, Windows XP and NT. Users can also prevent a LM hash from being generated for their own password by using a password at least fifteen characters in length.
--
NTLM hashes have in turn become vulnerable in recent years to various attacks that effectively make them as weak today as LanMan hashes were back in 1998.
Reasons for continued use of LM hash
Many legacy third party SMB implementations have taken considerable time to add support for the stronger protocols that Microsoft has created to replace LM hashing because the open source communities supporting these libraries first had to reverse engineer the newer protocols—Samba took 5 years to add NTLMv2 support, while JCIFS took 10 years.Product | NTLMv1 support | NTLMv2 support |
Windows NT 3.1 | RTM | Not supported |
Windows NT 3.5 | RTM | Not supported |
Windows NT 3.51 | RTM | Not supported |
Windows NT 4 | RTM | Service Pack 4 |
Windows 95 | Not supported | Directory services client |
Windows 98 | RTM | Directory services client |
Windows 2000 | RTM | RTM |
Windows ME | RTM | Directory services client |
Samba | ? | Version 3.0 |
JCIFS | Not supported | Version 1.3.0 |
IBM AIX | 5.3 | Not supported as of v7.1 |
Poor patching regimes subsequent to software releases supporting the feature becoming available have contributed to some organisations continuing to use LM Hashing in their environments, even though the protocol is easily disabled in Active Directory itself.
Lastly, prior to the release of Windows Vista, many unattended build processes still used a DOS boot disk to start the installation of Windows using WINNT.EXE, something that requires LM hashing to be enabled for the legacy LAN Manager networking stack to work.