Consider a complex vector space equipped with an indefinite hermitian form. In the theory of Krein spaces it is common to call such an hermitian form an indefinite inner product. The following subsets are defined in terms of the square norm induced by the indefinite inner product: A subspace lying within is called a neutral subspace. Similarly, a subspace lying within is called positivesemi-definite, and a subspace lying within is called positivedefinite. A subspace in any of the above categories may be called semi-definite, and any subspace that is not semi-definite is called indefinite. Let our indefinite inner product space also be equipped with a decomposition into a pair of subspaces, called the fundamental decomposition, which respects the complex structure on. Hence the corresponding linear projection operators coincide with the identity on and annihilate, and they commute with multiplication by the of the complex structure. If this decomposition is such that and, then is called an indefinite inner product space; if, then is called a Krein space, subject to the existence of a majorant topology on . The operator is called the metric operator or fundamental symmetry, and may be used to define the Hilbert inner product : On a Krein space, the Hilbert inner product is positive definite, giving the structure of a Hilbert space. Under the weaker constraint, some elements of the neutral subspace may still be neutral in the Hilbert inner product, but many are not. For instance, the subspaces are part of the neutral subspace of the Hilbert inner product, because an element obeys. But an element which happens to lie in because will have a positive square norm under the Hilbert inner product. We note that the definition of the indefinite inner product as a Hermitian form implies that: Therefore the indefinite inner product of any two elements which differ only by an element is equal to the square norm of their average. Consequently, the inner product of any non-zero element with any other element must be zero, lest we should be able to construct some whose inner product with has the wrong sign to be the square norm of. Similar arguments about the Hilbert inner product lead to the conclusion that its neutral space is precisely, that elements of this neutral space have zero Hilbert inner product with any element of, and that the Hilbert inner product is positive semi-definite. It therefore induces a positive definite inner product on the quotient space, which is the direct sum of. Thus is a Hilbert space.
Properties and applications
Krein spaces arise naturally in situations where the indefinite inner product has an analytically useful property which the Hilbert inner product lacks. It is also common for one of the two inner products, usually the indefinite one, to be globally defined on a manifold and the other to be coordinate-dependent and therefore defined only on a local section. In many applications the positive semi-definite inner product depends on the chosen fundamental decomposition, which is, in general, not unique. But it may be demonstrated that any two metric operators and compatible with the same indefinite inner product on result in Hilbert spaces and whose decompositions and have equal dimensions. Although the Hilbert inner products on these quotient spaces do not generally coincide, they induce identical square norms, in the sense that the square norms of the equivalence classes and into which a given falls are equal. All topological notions in a Krein space, like continuity, closed-ness of sets, and the spectrum of an operator on, are understood with respect to this Hilbert space topology.
Let,, be subspaces of. The subspace for all is called the orthogonal companion of, and is the isotropic part of. If, is called non-degenerate; otherwise it is degenerate. If for all, then the two subspaces are said to be orthogonal, and we write. If where, we write. If, in addition, this is a direct sum, we write.
Pontryagin space
If, the Krein space is called a Pontryagin space or -space. In this case is known as the number of positive squares of. Pontrjagin spaces are named after Lev Semenovich Pontryagin.
Pesonen operator
A symmetric operatorA on an indefinite inner product space K with domain K is called a Pesonen operator if = 0 = implies x = 0.