Kernel (algebra)
In algebra, the kernel of a homomorphism is generally the inverse image of 0. An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix.
The kernel of a homomorphism is reduced to 0 if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the degree to which the homomorphism fails to be injective.
For some types of structure, such as abelian groups and vector spaces, the possible kernels are exactly the substructures of the same type. This is not always the case, and, sometimes, the possible kernels have received a special name, such as normal subgroup for groups and two-sided ideals for rings.
Kernels allow defining quotient objects. For many types of algebraic structure, the fundamental theorem on homomorphisms states that image of a homomorphism is isomorphic to the quotient by the kernel.
The concept of a kernel has been extended to structures such that the inverse image of a single element is not sufficient for deciding whether an homomorphism is injective. In these cases, the kernel is a congruence relation.
This article is a survey for some important types of kernels in algebraic structures.
Survey of examples
Linear maps
Let V and W be vector spaces over a field and let T be a linear map from V to W. If 0W is the zero vector of W, then the kernel of T is the preimage of the zero subspace ; that is, the subset of V consisting of all those elements of V that are mapped by T to the element 0W. The kernel is usually denoted as, or some variation thereof:Since a linear map preserves zero vectors, the zero vector 0V of V must belong to the kernel. The transformation T is injective if and only if its kernel is reduced to the zero subspace.
The kernel ker T is always a linear subspace of V. Thus, it makes sense to speak of the quotient space V/. The first isomorphism theorem for vector spaces states that this quotient space is naturally isomorphic to the image of T. As a consequence, the dimension of V equals the dimension of the kernel plus the dimension of the image.
If V and W are finite-dimensional and bases have been chosen, then T can be described by a matrix M, and the kernel can be computed by solving the homogeneous system of linear equations. In this case, the kernel of T may be identified to the kernel of the matrix M, also called "null space" of M. The dimension of the null space, called the nullity of M, is given by the number of columns of M minus the rank of M, as a consequence of the rank–nullity theorem.
Solving homogeneous differential equations often amounts to computing the kernel of certain differential operators.
For instance, in order to find all twice-differentiable functions f from the real line to itself such that
let V be the space of all twice differentiable functions, let W be the space of all functions, and define a linear operator T from V to W by
for f in V and x an arbitrary real number.
Then all solutions to the differential equation are in ker T.
One can define kernels for homomorphisms between modules over a ring in an analogous manner. This includes kernels for homomorphisms between abelian groups as a special case. This example captures the essence of kernels in general abelian categories; see Kernel.
Group homomorphisms
Let G and H be groups and let f be a group homomorphism from G to H. If eH is the identity element of H, then the kernel of f is the preimage of the singleton set ; that is, the subset of G consisting of all those elements of G that are mapped by f to the element eH.The kernel is usually denoted . In symbols:
Since a group homomorphism preserves identity elements, the identity element eG of G must belong to the kernel.
The homomorphism f is injective if and only if its kernel is only the singleton set. This is true because if the homomorphism f is not injective, then there exists with such that. This means that, which is equivalent to stating that since group homomorphisms carry inverses into inverses and since. In other words,. Conversely, if there exists an element, then, thus f is not injective.
It turns out that ker f is not only a subgroup of G but in fact a normal subgroup. Thus, it makes sense to speak of the quotient group G/. The first isomorphism theorem for groups states that this quotient group is naturally isomorphic to the image of f.
In the special case of abelian groups, this works in exactly the same way as in the previous section.
Example
Let G be the cyclic group on 6 elements with modular addition, H be the cyclic on 2 elements with modular addition, and f the homomorphism that maps each element g in G to the element g modulo 2 in H. Then ker f =, since all these elements are mapped to 0H. The quotient group G/ has two elements: and. It is indeed isomorphic to H.Ring homomorphisms
Let R and S be rings and let f be a ring homomorphism from R to S.If 0S is the zero element of S, then the kernel of f is its kernel as linear map over the integers, or, equivalently, as additive groups. It is the preimage of the zero ideal, which is, the subset of R consisting of all those elements of R that are mapped by f to the element 0S.
The kernel is usually denoted .
In symbols:
Since a ring homomorphism preserves zero elements, the zero element 0R of R must belong to the kernel.
The homomorphism f is injective if and only if its kernel is only the singleton set.
This is always the case if R is a field, and S is not the zero ring.
Since ker f contains the multiplicative identity only when S is the zero ring, it turns out that the kernel is generally not a subring of R. The kernel is a subrng, and, more precisely, a two-sided ideal of R.
Thus, it makes sense to speak of the quotient ring R/.
The first isomorphism theorem for rings states that this quotient ring is naturally isomorphic to the image of f..
To some extent, this can be thought of as a special case of the situation for modules, since these are all bimodules over a ring R:
- R itself;
- any two-sided ideal of R ;
- any quotient ring of R ; and
- the codomain of any ring homomorphism whose domain is R.
This example captures the essence of kernels in general Mal'cev algebras.
Monoid homomorphisms
Let M and N be monoids and let f be a monoid homomorphism from M to N.Then the kernel of f is the subset of the direct product M × M consisting of all those ordered pairs of elements of M whose components are both mapped by f to the same element in N.
The kernel is usually denoted .
In symbols:
Since f is a function, the elements of the form must belong to the kernel.
The homomorphism f is injective if and only if its kernel is only the diagonal set.
It turns out that ker f is an equivalence relation on M, and in fact a congruence relation.
Thus, it makes sense to speak of the quotient monoid M/.
The first isomorphism theorem for monoids states that this quotient monoid is naturally isomorphic to the image of f,.
This is very different in flavour from the above examples.
In particular, the preimage of the identity element of N is not enough to determine the kernel of f.
Universal algebra
All the above cases may be unified and generalized in universal algebra.General case
Let A and B be algebraic structures of a given type and let f be a homomorphism of that type from A to B.Then the kernel of f is the subset of the direct product A × A consisting of all those ordered pairs of elements of A whose components are both mapped by f to the same element in B.
The kernel is usually denoted .
In symbols:
Since f is a function, the elements of the form must belong to the kernel.
The homomorphism f is injective if and only if its kernel is exactly the diagonal set.
It is easy to see that ker f is an equivalence relation on A, and in fact a congruence relation.
Thus, it makes sense to speak of the quotient algebra A/.
The first isomorphism theorem in general universal algebra states that this quotient algebra is naturally isomorphic to the image of f.
Note that the definition of kernel here doesn't depend on the algebraic structure; it is a purely set-theoretic concept.
For more on this general concept, outside of abstract algebra, see kernel of a function.
Mal'cev algebras
In the case of Mal'cev algebras, this construction can be simplified. Every Mal'cev algebra has a special neutral element. The characteristic feature of a Mal'cev algebra is that we can recover the entire equivalence relation ker f from the equivalence class of the neutral element.To be specific, let A and B be Mal'cev algebraic structures of a given type and let f be a homomorphism of that type from A to B. If eB is the neutral element of B, then the kernel of f is the preimage of the singleton set ; that is, the subset of A consisting of all those elements of A that are mapped by f to the element eB.
The kernel is usually denoted . In symbols:
Since a Mal'cev algebra homomorphism preserves neutral elements, the identity element eA of A must belong to the kernel. The homomorphism f is injective if and only if its kernel is only the singleton set.
The notion of ideal generalises to any Mal'cev algebra.
It turns out that ker f is not a subalgebra of A, but it is an ideal.
Then it makes sense to speak of the quotient algebra G/.
The first isomorphism theorem for Mal'cev algebras states that this quotient algebra is naturally isomorphic to the image of f.
The connection between this and the congruence relation for more general types of algebras is as follows.
First, the kernel-as-an-ideal is the equivalence class of the neutral element eA under the kernel-as-a-congruence. For the converse direction, we need the notion of quotient in the Mal'cev algebra.
Using this, elements a and b of A are equivalent under the kernel-as-a-congruence if and only if their quotient a/b is an element of the kernel-as-an-ideal.
Algebras with nonalgebraic structure
Sometimes algebras are equipped with a nonalgebraic structure in addition to their algebraic operations.For example, one may consider topological groups or topological vector spaces, with are equipped with a topology.
In this case, we would expect the homomorphism f to preserve this additional structure; in the topological examples, we would want f to be a continuous map.
The process may run into a snag with the quotient algebras, which may not be well-behaved.
In the topological examples, we can avoid problems by requiring that topological algebraic structures be Hausdorff ; then the kernel will be a closed set and the quotient space will work fine.
Kernels in category theory
The notion of kernel in category theory is a generalisation of the kernels of abelian algebras; see Kernel.The categorical generalisation of the kernel as a congruence relation is the kernel pair.