Irrelevant ideal
In mathematics, the irrelevant ideal is the ideal of a graded ring generated by the homogeneous elements of degree greater than zero. More generally, a homogeneous ideal of a graded ring is called an irrelevant ideal if its radical contains the irrelevant ideal.
The terminology arises from the connection with algebraic geometry. If R = k graded with respect to degree, there is a bijective correspondence between projective algebraic sets in projective n-space over k and homogeneous, radical ideals of R not equal to the irrelevant ideal. More generally, for an arbitrary graded ring R, the Proj construction disregards all irrelevant ideals of R.