Interpretability logic


Interpretability logics comprise a family of modal logics that extend provability logic to describe interpretability or various related metamathematical properties and relations such as weak interpretability, Π1-conservativity, cointerpretability, tolerance, cotolerance, and arithmetic complexities.
Main contributors to the field are Alessandro Berarducci, Petr Hájek, Konstantin Ignatiev, Giorgi Japaridze, Franco Montagna, Vladimir Shavrukov, Rineke Verbrugge, Albert Visser, and Domenico Zambella.

Examples

Axiom schemata:
1. All classical tautologies
2.
3.
4.
5.
6.
7.
8.
9.
Rules inference:
1. “From and conclude ”
2. “From conclude ”.
The completeness of ILM with respect to its arithmetical interpretation was independently proven by Alessandro Berarducci and Vladimir Shavrukov.
Axioms :
1. All classical tautologies
2.
3.
4.
5.
6.
7.
Rules inference:
1. “From and conclude ”
2. “From conclude ”.
The completeness of TOL with respect to its arithmetical interpretation was proven by Giorgi Japaridze.