More formally: we define by simultaneous transfinite recursion the notion of ∞-Borel code, and of the interpretation of such codes. Since is Polish, it has a countable base. Let enumerate that base. Now:
Every natural number is an ∞-Borel code. Its interpretation is.
If is an ∞-Borel code with interpretation, then the ordered pair is also an ∞-Borel code, and its interpretation is the complement of, that is,.
If is a length-α sequence of ∞-Borel codes for some ordinal α, then the ordered pair is an ∞-Borel code, and its interpretation is.
Now a set is ∞-Borel if it is the interpretation of some ∞-Borel code. The axiom of choice implies that every set can be wellordered, and therefore that every subset of every Polish space is ∞-Borel. Therefore, the notion is interesting only in contexts where AC does not hold. Unfortunately, without the axiom of choice, it is not clear that the ∞-Borel sets areclosed under wellordered union. This is because, given a wellordered union of ∞-Borel sets, each of the individual sets may have many ∞-Borel codes, and there may be no way to choose one code for each of the sets, with which to form the code for the union. The assumption that every set of reals is ∞-Borel is part of AD+, an extension of the axiom of determinacy studied by Woodin.
It is very tempting to read the informal description at the top of this article as claiming that the ∞-Borel sets are the smallestclass of subsets of containing all the open sets and closed under complementation and wellordered union. That is, one might wish to dispense with the ∞-Borel codes altogether and try a definition like this: This set is manifestly closed under well-ordered unions, but without AC it cannot be provedequal to the ∞-Borel sets. Specifically, it is instead the closure of the ∞-Borel sets under all well-ordered unions, even those for which a choice of codes cannot be made.
Alternative characterization
For subsets of Baire space or Cantor space, there is a more concise alternative definition, which turns out to be equivalent. A subset A of Baire space is ∞-Borel just in case there is a set of ordinals S and a first-order formula φ of the language of set theorysuch that, for every x in Baire space, where L is Gödel's constructible universe relativized to S and x. When using this definition, the ∞-Borel code is made up of the set S and the formula φ, taken together.