Immersion (virtual reality)


Immersion into virtual reality is a perception of being physically present in a non-physical world. The perception is created by surrounding the user of the VR system in images, sound or other stimuli that provide an engrossing total environment.

Etymology

The name is a metaphoric use of the experience of applied to representation, fiction or simulation. Immersion can also be defined as the state of consciousness where a "visitor" or "immersant" 's awareness of physical self is transformed by being surrounded in an artificial environment; used for describing partial or complete suspension of disbelief, enabling action or reaction to stimulations encountered in a virtual or artistic environment. The greater the suspension of disbelief, the greater the degree of presence achieved.

Types

According to Ernest W. Adams, immersion can be separated into three main categories:
Staffan Björk and Jussi Holopainen, in Patterns In Game Design, divide immersion into similar categories, but call them sensory-motoric immersion, cognitive immersion and emotional immersion, respectively. In addition to these, they add a new category: spatial immersion, which occurs when a player feels the simulated world is perceptually convincing. The player feels that he or she is really "there" and that a simulated world looks and feels "real".

Presence

Presence, a term derived from the shortening of the original "telepresence", is a phenomenon enabling people to interact with and feel connected to the world outside their physical bodies via technology. It is defined as a person's subjective sensation of being there in a scene depicted by a medium, usually virtual in nature. Most designers focus on the technology used to create a high-fidelity virtual environment; however, the human factors involved in achieving a state of presence must be taken into account as well. It is the subjective perception, although generated by and/or filtered through human-made technology, that ultimately determines the successful attainment of presence.
Virtual reality glasses can produce a visceral feeling of being in a simulated world, a form of spatial immersion called Presence. According to Oculus VR, the technology requirements to achieve this visceral reaction are low-latency and precise tracking of movements.
Michael Abrash gave a talk on VR at Steam Dev Days in 2014. According to the VR research team at Valve, all of the following are needed to establish presence.
Immersive virtual reality is a hypothetical future technology that exists today as virtual reality art projects, for the most part. It consists of immersion in an artificial environment where the user feels just as immersed as they usually feel in everyday life.

Direct interaction of the nervous system

The most considered method would be to induce the sensations that made up the virtual reality in the nervous system directly. In functionalism/conventional biology we interact with everyday life through the nervous system. Thus we receive all input from all the senses as nerve impulses. It gives your neurons a feeling of heightened sensation. It would involve the user receiving inputs as artificially stimulated nerve impulses, the system would receive the CNS outputs and process them allowing the user to interact with the virtual reality. Natural impulses between the body and central nervous system would need to be prevented. This could be done by blocking out natural impulses using nanorobots which attach themselves to the brain wiring, whilst receiving the digital impulses of which describe the virtual world, which could then be sent into the wiring of the brain. A feedback system between the user and the computer which stores the information would also be needed. Considering how much information would be required for such a system, it is likely that it would be based on hypothetical forms of computer technology.

Requirements

;Understanding of the nervous system
A comprehensive understanding of which nerve impulses correspond to which sensations, and which motor impulses correspond to which muscle contractions will be required. This will allow the correct sensations in the user, and actions in the virtual reality to occur. The Blue Brain Project is the current, most promising research with the idea of understanding how the brain works by building very large scale computer models.
;Ability to manipulate CNS
The central nervous system would obviously need to be manipulated. Whilst non-invasive devices using radiation have been postulated, invasive cybernetic implants are likely to become available sooner and be more accurate.
Molecular nanotechnology is likely to provide the degree of precision required and could allow the implant to be built inside the body rather than be inserted by an operation.
;Computer hardware/software to process inputs/outputs
A very powerful computer would be necessary for processing virtual reality complex enough to be nearly indistinguishable from everyday life and interacting with central nervous system fast enough.

Immersive digital environments

An immersive digital environment is an artificial, interactive, computer-created scene or "world" within which a user can immerse themselves.
Immersive digital environments could be thought of as synonymous with virtual reality, but without the implication that actual "reality" is being simulated. An immersive digital environment could be a model of reality, but it could also be a complete fantasy user interface or abstraction, as long as the user of the environment is immersed within it. The definition of immersion is wide and variable, but here it is assumed to mean simply that the user feels like they are part of the simulated "universe". The success with which an immersive digital environment can actually immerse the user is dependent on many factors such as believable 3D computer graphics, surround sound, interactive user-input and other factors such as simplicity, functionality and potential for enjoyment. New technologies are currently under development which claim to bring realistic environmental effects to the players' environment – effects like wind, seat vibration and ambient lighting.

Perception

To create a sense of full immersion, the 5 senses must perceive the digital environment to be physically real. Immersive technology can perceptually fool the senses through:
Once the senses reach a sufficient belief that the digital environment is real, the user must then be able to interact with the environment in a natural, intuitive manner. Various immersive technologies such as gestural controls, motion tracking, and computer vision respond to the user's actions and movements. Brain control interfaces respond to the user's brainwave activity.

Examples and applications

Training and rehearsal simulations run the gamut from part task procedural training through situational simulation to full motion simulations which train pilots or soldiers and law enforcement in scenarios that are too dangerous to train in actual equipment using live ordinance.
Video games from simple arcade to massively multiplayer online game and training programs such as flight and driving simulators. Entertainment environments such as motion simulators that immerse the riders/players in a virtual digital environment enhanced by motion, visual and aural cues. Reality simulators, such as one of the Virunga Mountains in Rwanda that takes you on a trip through the jungle to meet a tribe of mountain gorillas. Or training versions such as one which simulates taking a ride through human arteries and the heart to witness the buildup of plaque and thus learn about cholesterol and health.
In parallel with scientist, artists like Knowbotic Research, Donna Cox, Rebecca Allen, Robbie Cooper, Maurice Benayoun, Char Davies, and Jeffrey Shaw use the potential of immersive virtual reality to create physiologic or symbolic experiences and situations.
Other examples of immersion technology include physical environment / immersive space with surrounding digital projections and sound such as the CAVE, and the use of virtual reality headsets for viewing movies, with head-tracking and computer control of the image presented, so that the viewer appears to be inside the scene. The next generation is VIRTSIM, which achieves total immersion through motion capture and wireless head mounted displays for teams of up to thirteen immersants enabling natural movement through space and interaction in both the virtual and physical space simultaneously.

Use in medical care

New fields of studies linked to immersive virtual reality emerge every day. Researchers see a great potential in virtual reality tests serving as complementary interview methods in psychiatric care.
Immersive virtual reality have in studies also been used as an educational tool in which the visualization of psychotic states have been used to get increased understanding of patients with similar symptoms. New treatment methods are available for schizophrenia and other newly developed research areas where immersive virtual reality is expected to achieve melioration is in education of surgical procedures, rehabilitation program from injuries and surgeries and reduction of phantom limb pain.

Applications in the built environment

In the domain of architectural design and building science, immersive virtual environments are adopted to facilitate architects and building engineers to enhance the design process through assimilating their sense of scale, depth, and spatial awareness. Such platforms integrate the use of virtual reality models and mixed reality technologies in various functions of building science research, construction operations, personnel training, end-user surveys, performance simulations and building information modeling visualization. Head-mounted displays and CAVE platforms are used for spatial visualization and building information modeling navigations for different design and evaluation purposes. Clients, architects and building owners use derived applications from game engines to navigate 1:1 scale BIM models, allowing a virtual walkthrough experience of future buildings. For such use cases, the performance improvement of space navigation between virtual reality headsets and 2D desktop screens has been investigated in various studies, with some suggesting significant improvement in virtual reality headsets while others indicate no significant difference. Architects and building engineers can also use immersive design tools to model various building elements in virtual reality CAD interfaces, and apply property modifications to building information modeling files through such environments.
In the building construction phase, immersive environments are used to improve site preparations, on site communication and collaboration of team members, safety and logistics. For training of construction workers, virtual environments have shown to be highly effective in skill transfer with studies showing similar performance results to training in real environments. Moreover, virtual platforms are also used in the operation phase of buildings to interact and visualize data with Internet of Things devices available in buildings, process improvement and also resource management.
Occupant and end-user studies are performed through immersive environments. Virtual immersive platforms engage future occupants in the building design process by providing a sense of presence to users with integrating pre-construction mock-ups and BIM models for the evaluation of alternative design options in the building model in a timely and cost efficient manner. Studies conducting human experiments have shown users perform similarly in daily office activities within immersive virtual environments and benchmarked physical environments. In the field of lighting, virtual reality headsets have been used investigate the influence of façade patterns on the perceptual impressions and satisfaction of a simulated daylit space. Moreover, artificial lighting studies have implemented immersive virtual environments to evaluate end-users lighting preferences of simulated virtual scenes with the controlling of the blinds and artificial lights in the virtual environment.
For structural engineering and analysis, immersive environments enable the user to focus on structural investigations without getting too distracted to operate and navigate the simulation tool. Virtual and augmented reality applications have been designed for finite element analysis of shell structures. Using stylus and data gloves as input devices, the user can create, modify mesh, and specify boundary conditions. For a simple geometry, real-time color-coded results are obtained by changing loads on the model. Studies have used artificial neural networks or approximation methods to achieve real-time interaction for the complex geometry, and to simulate its impact via haptic gloves. Large scale structures and bridge simulation have also been achieved in immersive virtual environments. The user can move the loads acting on the bridge, and finite element analysis results are updated immediately using an approximate module.

Detrimental effects

, or simulator sickness, is a condition where a person exhibits symptoms similar to motion sickness caused by playing computer/simulation/video games.
Motion sickness due to virtual reality is very similar to simulation sickness and motion sickness due to films. In virtual reality, however, the effect is made more acute as all external reference points are blocked from vision, the simulated images are three-dimensional and in some cases stereo sound that may also give a sense of motion. Studies have shown that exposure to rotational motions in a virtual environment can cause significant increases in nausea and other symptoms of motion sickness.
Other behavioural changes such as stress, addiction, isolation and mood changes are also discussed to be side-effects caused by immersive virtual reality.

Footnotes