Hilbert class field


In algebraic number theory, the Hilbert class field E of a number field K is the maximal abelian unramified extension of K. Its degree over K equals the class number of K and the Galois group of E over K is canonically isomorphic to the ideal class group of K using Frobenius elements for prime ideals in K.
In this context, the Hilbert class field of K is not just unramified at the finite places but also at the infinite places of K. That is, every real embedding of K extends to a real embedding of E.

Examples

The existence of a Hilbert class field for a given number field K was conjectured by and proved by Philipp Furtwängler. The existence of the Hilbert class field is a valuable tool in studying the structure of the ideal class group of a given field.

Additional properties

The Hilbert class field E also satisfies the following:
In fact, E is the unique field satisfying the first, second, and fourth properties.

Explicit constructions

If K is imaginary quadratic and A is an elliptic curve with complex multiplication by the ring of integers of K, then adjoining the j-invariant of A to K gives the Hilbert class field.

Generalizations

In class field theory, one studies the ray class field with respect to a given modulus, which is a formal product of prime ideals. The ray class field is the maximal abelian extension unramified outside the primes dividing the modulus and satisfying a particular ramification condition at the primes dividing the modulus. The Hilbert class field is then the ray class field with respect to the trivial modulus 1.
The narrow class field is the ray class field with respect to the modulus consisting of all infinite primes. For example, the argument above shows that is the narrow class field of.