Hang gliding


Hang gliding is an air sport or recreational activity in which a pilot flies a light, non-motorised foot-launched heavier-than-air aircraft called a hang glider. Most modern hang gliders are made of an aluminium alloy or composite frame covered with synthetic sailcloth to form a wing. Typically the pilot is in a harness suspended from the airframe, and controls the aircraft by shifting body weight in opposition to a control frame.
Early hang gliders had a low lift-to-drag ratio, so pilots were restricted to gliding down small hills. By the 1980s this ratio significantly improved, and since then pilots can soar for hours, gain thousands of feet of altitude in thermal updrafts, perform aerobatics, and glide cross-country for hundreds of kilometers. The Fédération Aéronautique Internationale and national airspace governing organisations control some regulatory aspects of hang gliding. Obtaining the safety benefits of being instructed is highly recommended.

History

By the end of the sixth century A.D., the Chinese had managed to build kites large and aerodynamic enough to sustain the weight of an average-sized person. It was only a matter of time before someone decided to simply remove the kite strings and see what happened.
Most early glider designs did not ensure safe flight; the problem was that early flight pioneers did not sufficiently understand the underlying principles that made a bird's wing work. Starting in the 1880s technical and scientific advancements were made that led to the first truly practical gliders, such as those developed in the United States by John Joseph Montgomery. Otto Lilienthal built controllable gliders in the 1890s, with which he could ridge soar. His rigorously documented work influenced later designers, making Lilienthal one of the most influential early aviation pioneers. His aircraft was controlled by weight shift and is similar to a modern hang glider.
with a double sail glider
Hang gliding saw a stiffened flexible wing hang glider in 1904, when Jan Lavezzari flew a double lateen sail hang glider off Berck Beach, France. In 1910 in Breslau, the triangle control frame with hang glider pilot hung behind the triangle in a hang glider, was evident in a gliding club's activity. The biplane hang glider was very widely publicized in public magazines with plans for building; such biplane hang gliders were constructed and flown in several nations since Octave Chanute and his tailed biplane hang gliders were demonstrated. In April 1909, a how-to article by Carl S. Bates proved to be a seminal hang glider article that seemingly affected builders even of contemporary times, as several builders would have their first hang glider made by following the plan in his article. Volmer Jensen with a biplane hang glider in 1940 called VJ-11 allowed safe three-axis control of a foot-launched hang glider.
glider in flight with tow cable .
On November 23, 1948, Francis Rogallo and Gertrude Rogallo applied for a kite patent for a fully flexible kited wing with approved claims for its stiffenings and gliding uses; the flexible wing or Rogallo wing, which in 1957 the American space agency NASA began testing in various flexible and semi-rigid configurations in order to use it as a recovery system for the Gemini space capsules. The various stiffening formats and the wing's simplicity of design and ease of construction, along with its capability of slow flight and its gentle landing characteristics, did not go unnoticed by hang glider enthusiasts. In 1960–1962 Barry Hill Palmer adapted the flexible wing concept to make foot-launched hang gliders with four different control arrangements. In 1963 Mike Burns adapted the flexible wing to build a towable kite-hang glider he called Skiplane. In 1963, John W. Dickenson adapted the flexible wing airfoil concept to make another water-ski kite glider; for this, the Fédération Aéronautique Internationale vested Dickenson with the Hang Gliding Diploma for the invention of the "modern" hang glider. Since then, the Rogallo wing has been the most used airfoil of hang gliders.

Components

Hang glider sailcloth

There are basically two types of sail materials used in hang glider sails: woven polyester fabrics, and composite laminated fabrics made of some combinations.
Woven polyester sailcloth is a very tight weave of small diameter polyester fibers that has been stabilized by the hot-press impregnation of a polyester resin. The resin impregnation is required to provide resistance to distortion and stretch. This resistance is important in maintaining the aerodynamic shape of the sail. Woven polyester provides the best combination of light weight and durability in a sail with the best overall handling qualities.
Laminated sail materials using polyester film achieve superior performance by using a lower stretch material that is better at maintaining sail shape but is still relatively light in weight. The disadvantages of polyester film fabrics is that the reduced elasticity under load generally results in stiffer and less responsive handling, and polyester laminated fabrics are generally not as durable or long lasting as the woven fabrics.

Triangle control frame

In most hang gliders, the pilot is ensconced in a harness suspended from the airframe, and exercises control by shifting body weight in opposition to a stationary control frame, also known as triangle control frame, control bar or base bar. This bar is usually pulled to allow for greater speed. Either end of the control bar is attached to an upright pipe, where both extend and are connected to the main body of the glider. This creates the shape of a triangle or 'A-frame'. In many of these configurations additional wheels or other equipment can be suspended from the bottom bar or rod ends.
Images showing a triangle control frame on Otto Lilienthal's 1892 hang glider shows that the technology of such frames has existed since the early design of gliders, but he did not mention it in his patents. A control frame for body weight shift was also shown in Octave Chanute's designs. It was a major part of the now common design of hang gliders by George A. Spratt from 1929. The most simple A-frame that is cable-stayed was demonstrated in a Breslau gliding club hang gliding meet in a battened wing foot-launchable hang glider in the year 1908 by W. Simon; hang glider historian Stephan Nitsch has collected instances also of the U control frame used in the first decade of the 1900s; the U is variant of the A-frame.

Training and safety

Due to the poor safety record of early hang gliding pioneers, the sport has traditionally been considered unsafe. Advances in pilot training and glider construction have led to a much improved safety record. Modern hang gliders are very sturdy when constructed to Hang Glider Manufacturers Association, BHPA, Deutscher Hängegleiterverband, or other certified standards using modern materials. Although lightweight they can be easily damaged, either through misuse or by continued operation in unsafe wind and weather conditions. All modern gliders have built-in dive recovery mechanisms such as luff lines in kingposted gliders, or "sprogs" in topless gliders.
Pilots fly in harnesses that support their bodies. Several different types of harnesses exist. Pod harnesses are put on like a jacket and the leg portion is behind the pilot during launch. Once in the air the feet are tucked into the bottom of the harness. They are zipped up in the air with a rope and unzipped before landing with a separate rope. A cocoon harness is slipped over the head and lies in front of the legs during launch. After takeoff, the feet are tucked into it and the back is left open. A knee hanger harness is also slipped over the head but the knee part is wrapped around the knees before launch and just pick up the pilots leg automatically after launch. A supine or suprone harness is a seated harness. The shoulder straps are put on before launch and after takeoff the pilot slides back into the seat and flies in a seated position.
Pilots carry a parachute enclosed in the harness. In case of serious problems, the parachute is manually deployed and carries both pilot and glider down to earth. Pilots also wear helmets and generally carry other safety items such as knives, light ropes, radios, and first-aid equipment.
The accident rate from hang glider flying has been dramatically decreased by pilot training. Early hang glider pilots learned their sport through trial and error and gliders were sometimes home-built. Training programs have been developed for today's pilot with emphasis on flight within safe limits, as well as the discipline to cease flying when weather conditions are unfavorable, for example: excess wind or risk cloud suck.
In the UK, a 2011 study reported there is one death per 116,000 flights, a risk comparable to sudden cardiac death from running a marathon or playing tennis. An estimate of worldwide mortality rate is one death per 1,000 active pilots per year.
Most pilots learn at recognised courses which lead to the internationally recognised International Pilot Proficiency Information card issued by the FAI.

Launch

Launch techniques include launching from a hill on foot, tow-launching from a ground-based tow system, aerotowing, powered harnesses, and being towed up by a boat. Modern winch tows typically utilize hydraulic systems designed to regulate line tension, this reduces scenarios for lock out as strong winds result in additional length of rope spooling out rather than direct tension on the tow line. Other more exotic launch techniques have also been used successfully, such as hot air balloon drops from very high altitude. When weather conditions are unsuitable to sustain a soaring flight, this results in a top-to-bottom flight and is referred to as a "sled run". In addition to typical launch configurations, a hang glider may be so constructed for alternative launching modes other than being foot launched; one practical avenue for this is for people who physically cannot foot-launch.
In 1983 Denis Cummings re-introduced a safe tow system that was designed to tow through the centre of mass and had a gauge that displayed the towing tension, it also integrated a 'weak link' that broke when the safe tow tension was exceeded. After initial testing, in the Hunter Valley, Denis Cummings, pilot, John Clark,, driver and Bob Silver, officianado, began the Flatlands Hang gliding competition at Parkes, NSW. The competition quickly grew, from 16 pilots the first year to hosting a World Championship with 160 pilots towing from several wheat paddocks in western NSW.
In 1986 Denis and 'Redtruck' took a group of international pilots to Alice Springs to take advantage of the massive thermals. Using the new system many world records were set. With the growing use of the system, other launch methods were incorporated, static winch and towing behind an ultralight trike or an ultralight airplane.

Soaring flight and cross-country flying

A glider in flight is continuously descending, so to achieve an extended flight, the pilot must seek air currents rising faster than the sink rate of the glider. Selecting the sources of rising air currents is the skill that has to be mastered if the pilot wants to achieve flying long distances, known as cross-country. Rising air masses derive from the following sources:
; Thermals
; Ridge lift
; Mountain waves
; Convergence

Performance

With each generation of materials and with the improvements in aerodynamics, the performance of hang gliders has increased. One measure of performance is the glide ratio. For example, a ratio of 12:1 means that in smooth air a glider can travel forward 12 metres while only losing 1 metre of altitude.
Some performance figures as of 2006:
; Ballast

Stability and equilibrium

Because hang gliders are most often used for recreational flying, a premium is placed on gentle behaviour especially at the stall and natural pitch stability. The wing loading must be very low in order to allow the pilot to run fast enough to get above stall speed. Unlike a traditional aircraft with an extended fuselage and empennage for maintaining stability, hang gliders rely on the natural stability of their flexible wings to return to equilibrium in yaw and pitch. Roll stability is generally set to be near neutral. In calm air, a properly designed wing will maintain balanced trimmed flight with little pilot input. The flex wing pilot is suspended beneath the wing by a strap attached to his harness. The pilot lies prone within a large, triangular, metal control frame. Controlled flight is achieved by the pilot pushing and pulling on this control frame thus shifting his weight fore or aft, and right or left in coordinated maneuvers.
; Roll
; Yaw
; Pitch
Furthermore, the fact that the wing is designed to bend and flex, provides favourable dynamics analogous to a spring suspension. This provides a gentler flying experience than a similarly sized rigid-winged hang glider.

Instruments

To maximize a pilot's understanding of how the hang glider is flying, most pilots carry flight instruments. The most basic being a variometer and altimeter—often combined. Some more advanced pilots also carry airspeed indicators and radios. When flying in competition or cross country, pilots often also carry maps and/or GPS units. Hang gliders do not have instrument panels as such, so all the instruments are mounted to the control frame of the glider or occasionally strapped to the pilot's forearm.

Variometer

Gliding pilots are able to sense the acceleration forces when they first hit a thermal, but have difficulty gauging constant motion. Thus it is difficult to detect the difference between constantly rising air and constantly sinking air. A variometer is a very sensitive vertical speed indicator. The variometer indicates climb rate or sink rate with audio signals and/or a visual display. These units are generally electronic, vary in sophistication, and often include an altimeter and an airspeed indicator. More advanced units often incorporate a barograph for recording flight data and/or a built-in GPS. The main purpose of a variometer is in helping a pilot find and stay in the 'core' of a thermal to maximize height gain, and conversely indicating when he or she is in sinking air and needs to find rising air. Variometers are sometimes capable of electronic calculations to indicate the optimal speed to fly for given conditions. The MacCready theory answers the question on how fast a pilot should cruise between thermals, given the average lift the pilot expects in the next thermal climb and the amount of lift or sink he encounters in cruise mode. Some electronic variometers make the calculations automatically, allowing for factors such as the glider's theoretical performance, altitude, hook in weight, and wind direction.

Radio

Pilots use 2-way radio for training purposes, for communicating with other pilots in the air, and with their ground crew when traveling on cross-country flights.
One type of radios used are PTT handheld transceivers, operating in VHF FM. Usually a microphone is incorporated in the helmet, and the PTT switch is either fixed to the outside of the helmet, or strapped to a finger. Operating a VHF band radio without an appropriate license is illegal in most countries that have regulated airwaves, so additional informations must be obtained with the national or local Hang Gliding association.
As aircraft operating in airspace occupied by other aircraft, hang glider pilots also use the appropriate type of radio. It can, of course, be fitted with a PTT switch to a finger and speakers inside the helmet. The use of aircraft transceivers is subject to regulations specific to the use in the air such as frequencies restrictions, but has several advantages over FM radios used in other services. First is the great range it has because of its amplitude modulation. Second is the ability to contact, inform and be informed directly by other aircraft pilots of their intentions thereby improving collision avoidance and increasing safety. Third is to allow greater liberty regarding distance flights in regulated airspaces, in which the aircraft radio is normally a legal requirement. Fourth is the universal emergency frequency monitored by all other users and satellites and used in case of emergency or impending emergency.

GPS

can be used to aid in navigation. For competitions, it is used to verify the contestant reached the required check-points.

Records

Records are sanctioned by the FAI. The world record for straight distance is held by Dustin B. Martin, with a distance of in 2012, originating from Zapata, Texas.
Judy Leden holds the altitude record for a balloon-launched hang glider: 11,800 m at Wadi Rum, Jordan on October 25, 1994. Leden also holds the gain of height record: 3,970 m, set in 1992.
The altitude records for balloon-launched hang gliders:
AltitudeLocationPilotDateReference
38,800'Wadi Rum, JordanJudy LedenOctober 25, 1994
33,000'Edmonton, Alberta, CanadaJohn BirdAugust 29, 1982
32,720'California City, California, USAStephan DunoyerSeptember 9, 1978
31,600'Mojave Desert, California, USABob McCaffreyNovember 21, 1976
17,100'San Jose, California, USADennis KulbergDecember 25, 1974

Competition

Competitions started with "flying as long as possible" and spot landings. With increasing performance, cross-country flying replaced them. Usually two to four waypoints have to be passed with a landing at a goal. In the late 1990s low-power GPS units were introduced and have completely replaced photographs of the goal. Every two years there is a world championship. The Rigid and Women's World Championship in 2006 was hosted by . Big Spring, Texas hosted the 2007 World Championship. Hang gliding is also one of the competition categories in World Air Games organized by Fédération Aéronautique Internationale, which maintains a chronology of the FAI World Hang Gliding Championships.

Classes

For competitive purposes, there are three classes of hang glider:
There are four basic aerobatic maneuvers in a hang glider:
There can be confusion between gliders, hang gliders, and paragliders. Paragliders and hang gliders are both foot-launched glider aircraft and in both cases the pilot is suspended below the lift surface, but "hang glider" is the default term for those where the airframe contains rigid structures. The primary structure of paragliders is supple, consisting mainly of woven material.