Glutamate decarboxylase


Glutamate decarboxylase or glutamic acid decarboxylase is an enzyme that catalyzes the decarboxylation of glutamate to GABA and CO2. GAD uses PLP as a cofactor. The reaction proceeds as follows:
In mammals, GAD exists in two isoforms with molecular weights of 67 and 65 kDa, which are encoded by two different genes on different chromosomes. GAD67 and GAD65 are expressed in the brain where GABA is used as a neurotransmitter, and they are also expressed in the insulin-producing β-cells of the pancreas, in varying ratios depending upon the species. Together, these two enzymes maintain the major physiological supply of GABA in mammals, though it may also be synthesized from putrescine in the enteric nervous system, brain, and elsewhere by the actions of diamine oxidase and aldehyde dehydrogenase 1a1.
Several truncated transcripts and polypeptides of GAD67 are detectable in the developing brain, however their function, if any, is unknown.

Regulation of GAD65 and GAD67

Despite an extensive sequence similarity between the two genes, GAD65 and GAD67 fulfill very different roles within the human body. Additionally, research suggests that GAD65 and GAD67 are regulated by distinctly different cellular mechanisms.
GAD65 and GAD67 synthesize GABA at different locations in the cell, at different developmental times, and for functionally different purposes. GAD67 is spread evenly throughout the cell while GAD65 is localized to nerve terminals. GAD67 synthesizes GABA for neuron activity unrelated to neurotransmission, such as synaptogenesis and protection from neural injury. This function requires widespread, ubiquitous presence of GABA. GAD65, however, synthesizes GABA for neurotransmission, and therefore is only necessary at nerve terminals and synapses. In order to aid in neurotransmission, GAD65 forms a complex with Heat Shock Cognate 70, cysteine string protein and Vesicular GABA transporter VGAT, which, as a complex, helps package GABA into vesicles for release during neurotransmission. GAD67 is transcribed during early development, while GAD65 is not transcribed until later in life. This developmental difference in GAD67 and GAD65 reflects the functional properties of each isoform; GAD67 is needed throughout development for normal cellular functioning, while GAD65 is not needed until slightly later in development when synaptic inhibition is more prevalent.
GAD67 and GAD65 are also regulated differently post-translationally. Both GAD65 and GAD67 are regulated via phosphorylation of a dynamic catalytic loop, but the regulation of these isoforms differs; GAD65 is activated by phosphorylation while GAD67 is inhibited by phosphorylation. GAD67 is predominantly found activated, whereas GAD65 is predominantly found inactivated. GAD67 is phosphorylated at threonine 91 by protein kinase A, while GAD65 is phosphorylated, and therefore regulated by, protein kinase C. Both GAD67 and GAD65 are also regulated post-translationally by Pyridoxal 5’-phosphate ; GAD is activated when bound to PLP and inactive when not bound to PLP. Majority of GAD67 is bound to PLP at any given time, whereas GAD65 binds PLP when GABA is needed for neurotransmission. This reflects the functional properties of the two isoforms; GAD67 must be active at all times for normal cellular functioning, and is therefore constantly activated by PLP, while GAD65 must only be activated when GABA neurotransmission occurs, and is therefore regulated according to the synaptic environment.
Studies with mice also show functional differences between Gad67 and Gad65. GAD67−/− mice are born with cleft palate and die within a day after birth while GAD65−/− mice survive with a slightly increased tendency in seizures. Additionally, GAD65+/- have symptoms defined similarly to ADHD in humans.

Role in the nervous system

Both GAD67 and GAD65 are present in all types of synapses within the human nervous system. This includes dendrodendritic, axosomatic, and axodendritic synapses. Preliminary evidence suggests that GAD65 is dominant in the visual and neuroendocrine systems, which undergo more phasic changes. It is also believed that GAD67 is present at higher amounts in tonically active neurons.

Role in pathology

Autism

Both GAD65 and GAD67 experience significant downregulation in cases of autism. In a comparison of autistic versus control brains, GAD65 and GAD67 experienced a downregulation average of 50% in parietal and cerebellar cortices of autistic brains. Cerebellar Purkinje cells also reported a 40% downregulation, suggesting that affected cerebellar nuclei may disrupt output to higher order motor and cognitive areas of the brain.

Diabetes

Both GAD67 and GAD65 are targets of autoantibodies in people who later develop type 1 diabetes mellitus or latent autoimmune diabetes. Injections with GAD65 in ways that induce immune tolerance have been shown to prevent type 1 diabetes in rodent models. In clinical trials, injections with GAD65 have been shown to preserve some insulin production for 30 months in humans with type 1 diabetes.

Stiff person syndrome

High titers of autoantibodies to glutamic acid decarboxylase are well documented in association with stiff person syndrome. Glutamic acid decarboxylase is the rate-limiting enzyme in the synthesis of γ-aminobutyric acid, and impaired function of GABAergic neurons has been implicated in the pathogenesis of SPS. Autoantibodies to GAD might be the causative agent or a disease marker.

Schizophrenia and bipolar disorder

Substantial dysregulation of GAD mRNA expression, coupled with downregulation of reelin, is observed in schizophrenia and bipolar disorder. The most pronounced downregulation of GAD67 was found in hippocampal stratum oriens layer in both disorders and in other layers and structures of hippocampus with varying degrees.
GAD67 is a key enzyme involved in the synthesis of inhibitory neurotransmitter GABA and people with schizophrenia have been shown to express lower amounts of GAD67 in the dorsolateral prefrontal cortex compared to healthy controls. The mechanism underlying the decreased levels of GAD67 in people with schizophrenia remains unclear. Some have proposed that an immediate early gene, Zif268, which normally binds to the promoter region of GAD67 and increases transcription of GAD67, is lower in schizophrenic patients, thus contributing to decreased levels of GAD67. Since the dorsolateral prefrontal cortex is involved in working memory, and GAD67 and Zif268 mRNA levels are lower in the DLPFC of schizophrenic patients, this molecular alteration may account, at least in part, for the working memory impairments associated with the disease.

Parkinson disease

The bilateral delivery of glutamic acid decarboxylase by an adeno-associated viral vector into the subthalamic nucleus of patients between 30 and 75 years of age with advanced, progressive, levodopa-responsive Parkinson disease resulted in significant improvement over baseline during the course of a six-month study.

Cerebellar disorders

Intracerebellar administration of GAD autoantibodies to animals increases the excitability of motoneurons and impairs the production of nitric oxide, a molecule involved in learning. Epitope recognition contributes to cerebellar involvement. Reduced GABA levels increase glutamate levels as a consequence of lower inhibition of subtypes of GABA receptors. Higher glutamate levels activate microglia and activation of xc increases the extracellular glutamate release.

Neuropathic pain

of the sciatic nerve induces a transient loss of GAD65 immunoreactive terminals in the spinal cord dorsal horn and suggests a potential involvement for these alterations in the development and amelioration of pain behaviour.

Other Anti-GAD-associated neurologic disorders

Antibodies directed against glutamic acid decarboxylase are increasingly found in patients with other symptoms indicative of central nervous system dysfunction, such as ataxia, progressive encephalomyelitis with rigidity and myoclonus, limbic encephalitis, and epilepsy. The pattern of anti-GAD antibodies in epilepsy differs from type 1 diabetes and stiff-person syndrome.

Role of glutamate decarboxylase in Citrus

It is also believed that the control of glutamate decarboxylase has the prospect of improving citrus produce quality post-harvest. In Citrus plants, research has shown that glutamate decarboxylase plays a key role in citrate metabolism. With the increase of glutamate decarboxylase via direct exposure, citrate levels have been seen to significantly increase within plants, and in conjunction post-harvest quality maintenance was significantly improved, and rot rates decreased.